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Abstract

We describe methods for the derivation of strong asymptotics for the denominator

polynomials and the remainder of Padé approximants for a Markov function with a complex

and varying weight. Two approaches, both based on a Riemann–Hilbert problem, are

presented. The first method uses a scalar Riemann–Hilbert boundary value problem on a two-

sheeted Riemann surface, the second approach uses a matrix Riemann–Hilbert problem. The

result for a varying weight is not with the most general conditions possible, but the loss of

generality is compensated by an easier and transparent proof.
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1. Introduction

Recently, there has been considerable progress in proving strong asymptotics for
general orthogonal polynomials using methods of complex analysis and a Riemann–
Hilbert boundary value problem (BVP) for matrix analytic functions. This new
approach has been used extensively by P. Deift and his collaborators and an
important reference is [3]. The matrix Riemann–Hilbert problem for orthogonal
polynomials was first formulated by Fokas, Its and Kitaev [8], and analyzed by
Bleher and Its [2], Deift et al. [4–6], and Kriecherbauer and McLaughlin [10]. We
recommend the exposition of Kuijlaars [11] for an introduction to the use of the
Riemann–Hilbert approach for the asymptotic analysis of orthogonal polynomials.
In the present paper we explain special versions of BVP based approaches. The roots
of these versions lie in the research of rational approximants. The first presentation
of a version based on BVP on a Riemann surface was in the paper [13] of Nuttall,
although the ideas were in [14] and even in earlier papers of Nuttall (related
references can be found in [14], see also the paper of Stahl [16]). A substantial
development of the approach based on the BVP on a Riemann surface has been done
by Suetin in a recent paper [17], where Nuttall’s version of the asymptotic analysis
has been extended to Padé approximants for hyperelliptic functions. Also we would
like to add to the list of references an older paper [1] where the main ingredient, i.e., a
boundary value Riemann problem on a Riemann surface, has been considered in
connection with strong asymptotics of orthogonal polynomials.
The present paper is intended to describe the Riemann–Hilbert boundary value

problem and its relation to strong asymptotics of Padé approximants in a rather
general setting. In the appendix we give an introduction to the Riemann boundary
value problem. So a reader not familiar with the Riemann boundary value problem
is encouraged to start reading the paper from the end. The aim of this appendix is to
provide a ‘shortcut’ in complex analysis to give an idea of how to find a solution of a
boundary value problem on a Riemann surface, based just on the notion of Cauchy’s
integral formula and its generalization, the Cauchy residue theorem. The Riemann
surfaces, which will be used in this paper, have genus zero, which allows us to avoid
the non-trivial part of the theory of Riemann surfaces and requires from the reader
just a ‘naive’ understanding of a Riemann surface as a two-dimensional manifold in
four-dimensional space.
In Section 2 we solve a special Riemann problem, which will be used for the

derivation of the strong asymptotics. Then in Section 3, we prove strong asymptotics
of Padé approximants for a Markov function generated by an analytic, complex
valued weight function, i.e., strong asymptotics for polynomials orthogonal with
respect to an analytic complex valued weight. This result is just a repetition of the
corresponding theorem of Nuttall from [13], using for its proof ideas and details
from Suetin’s paper [17]. Nevertheless, there are some new methodological insights
which make the proof easier and which indicate that the method can be developed
for a wider class of applications. Next in Section 4 we prove a generalization of
Nuttall’s theorem when the complex valued weight has a varying real valued
component. An equilibrium problem in the presence of an external field plays an
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important role here. Finally (see Section 5), we consider Deift’s (with co-authors)
version of the Riemann–Hilbert problem approach to the strong asymptotics for
orthogonal polynomials (see [3]). The starting point of the approach is a
reformulation of the orthogonality relations in terms of a matrix Riemann–Hilbert
problem which has been introduced and developed in [7,2]. We choose for this
presentation of the approach a model problem of asymptotics for polynomials
orthogonal on ½�1; 1� with respect to a complex weight function—the same problem
as in Section 3. Here (again as in Section 3) we assume that the analytic weight
function has the same behavior at the end points of the interval of orthogonality as
the classical Chebyshev weight. This allows us to get a very easy proof (in the
framework of Deift’s approach) for the asymptotic formulas. This shortcut avoids
most of one delightful ingredient of the matrix Riemann–Hilbert problem approach,
which is the analysis around the end points.
Concluding the introduction we have to say that the paper has more emphasis on

explaining a method than on exposition of new results. We pay more attention to
showing the different points of view on the same subject and to transparency of the
proofs than to generality of the results proven here.

2. Auxiliary BVP

In this section, we start from the preliminary material presented in the appendix
(see below) to study a function which will be used in the formulation of the
asymptotic formulas later on. This function is introduced as a solution of some
boundary value problem. The function contains a generalisation of the well known

Szego+ function for the complex weight.

2.1. Statement of the problem, properties of the solution

Let RðzÞ be a complex valued function, RðxÞa0 for xA½�1; 1�; and assume that R
has an analytic continuation in the domain d*½�1; 1�; so that RAHðdÞ:We consider
the following BVP:

Find j;c such that

1: c;jAHðC\½�1; 1�Þ;
cðzÞj

N
¼ Oðz�nÞ;

jðzÞj
N

¼ OðznÞ;

�
2:

Rjþ ¼ c�

Rj� ¼ cþ

�
on ½�1; 1�;

3: cjj
N

¼ 1:

8>>>>><>>>>>:
ð1Þ

The boundary values j7 and c7 of j and c are assumed to be uniformly

bounded on ½�1; 1�:
We highlight several properties of the solutions of problem (1):
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Property 1. For every zAC we have

cðzÞjðzÞ ¼ 1: ð2Þ

Proof. From 2 in (1) it follows that ðjcÞþ ¼ ðjcÞ� on ½�1; 1�; so that 1 in (1)
implies that jc is analytic in C: The maximum principle (or Liouville’s theorem)
then shows that jc is constant, and by 3 of (1) we see that the constant is 1. &

From Property 1 we also have

Rjþj� ¼ 1 on ½�1; 1�: ð3Þ

Property 2. We have

c;ja0 in C: ð4Þ

Proof. This is an immediate consequence of 1 in (1) and Property 1. &

Let us consider a piecewise analytic function F on the two-sheeted Riemann
surface R (see Appendix, Fig. 4) consisting of two analytic pieces j and c placed on
the sheets RðþÞ and Rð�Þ; respectively:

FðzÞ ¼ jðzÞ; zARðþÞ;

cðzÞ; zARð�Þ:

(
ð5Þ

Let D be a contour on the Riemann surface splittingR into two pieces fRðþÞ
\½�1; 1�g

and fRð�Þ
\½�1; 1�g: For D we can choose a Jordan contour which goes along the

upper side of ½�1; 1� on fRðþÞg and along the lower side of ½�1; 1� on fRðþÞg in the
clockwise direction. Then the BVP (1) for the functions j and c is equivalent to the
BVP on R for F given by (5)

Find F such that

1: FAHðR\fD;NþgÞ; Fð7ÞðzÞj
N

¼ Oðz7nÞ;
2: RFþ ¼ F� on D;

3: FðþÞF ð�Þj
N

¼ 1:

8><>: ð6Þ

Properties 1 and 2 for ðj;cÞ transform into (see (2) and (3))
FðzðþÞÞFðzð�ÞÞ ¼ 1 8zAC;

and

Fa0 on R:

Finally, we mention the uniqueness property of the solution of (1) and (6).
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Property 3. If the solution of the BVP (6) exists, then it is unique.

Proof. Let F and eFF be two solutions of (6). Then 2 of (6) shows that eFF
F

� 	
þ
¼ eFF

F

� 	
�

on D; and hence eFFF is holomorphic on the whole Riemann surface R; and by the

maximum principle on R we have that
eFF
F ¼ const; and by 3 of (6) we conclude thateFF

F ¼ 1: &

Now we construct a solution of the BVP (6). First we proceed with a special case
and after that we consider the general case.

2.2. Special case. Representation of the mapping function and Szego+ function for a

Bernstein weight by rational functions on R

Let the multiplicative jump in the BVP (6) be given by

R :¼ 1
p
;

where p is an arbitrary polynomial of degree m with complex coefficients.

Polynomials orthogonal on ½�1; 1� with respect to the weight 1=ðpðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
Þ have

been considered by S.N. Bernstein, see, e.g., [18, Section 2.6].

Let BðzÞ be a function meromorphic on R; which is (like a rational function on C)
defined by its zeros and poles (divisors) as follows (see Fig. 1):

B :

� On RðþÞ at NðþÞ there is a pole of order n;

� On Rð�Þ we have the m zeros of pðzÞ ¼ cmzm þ?;

and at Nð�Þ there is a pole of order m � n:

8><>:
The normalization of B is chosen as

lim
z-N

BðþÞðzÞBð�ÞðzÞ
zm

¼ cm:
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It is easy to check that the function

F :¼ BðþÞ on RðþÞ;

RBð�Þ on Rð�Þ;

(
satisfies the BVP (6) for R ¼ 1=p: Indeed, condition 1 of (6) is valid by construction
of B: Condition 2 becomes

RBþ ¼ RB� on D

and it is valid since Bð�Þ is an analytic continuation of BðþÞ: Condition 3 is valid
because of the normalization of B at N:
The function B can be decomposed into the product of two rational functions on

R
B ¼ FBFn;

where the zeros of FB are on the sheet Rð�Þ at the zeros of p and FB has a pole of

order m at Nð�Þ (Fig. 2).

The function F has just a simple pole atNðþÞ and a simple zero atNð�Þ (Fig. 3)

The normalization is FðþÞFð�Þj
N

¼ 1: For the function F we know the explicit

expression

FðzÞ ¼ z þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p
; FðþÞj

N
¼ 2z þ? : ð7Þ

This is the inverse Zhukovsky function: FðzÞmaps the following regions to the inside
and outside of the unit circle:

Fð�Þ : fC\½�1; 1�g-fjwjo1g ¼: U ;

FðþÞ : fC\½�1; 1�g-fjwj41g ¼ C\ %U:

2.3. General case. Determination of the Szego+ function for a complex valued weight by

means of the solution of the Riemann problem on R

First we normalize the solution of the BVP (6) on R:

F :¼ F
Fn on R:
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For the bounded function F onR (taking into account the properties of F and F) we
have

1: FAHðR\DÞ; Fa0 on R;

2: RFþ ¼ F� on DCR;

3: F ðþÞF ð�Þ ¼ 1 on C:

8><>:
Observe the following equality, which follows from 2 and 3 of the above relation:

RF
ðþÞ
þ F ðþÞ

� ¼ 1 on ½�1; 1�CC: ð8Þ

Since F does not vanish on R and Ra0 on D; we can choose a single-valued branch
of the complex logarithm, connecting the functions ln F ðþÞ; ln F ð�Þ and ln R on D:
Thus, for the single-valued function ln F on R; we have the standard Riemann
problem (see Appendix (A.7)) on R:

1: ln FAHðR\DÞ;
2: ðln FÞþ � ðln FÞ� ¼ �ln R on D;

3: ln FðzðþÞÞ ¼ �ln Fðzð�ÞÞ;

8><>:
which can be solved using the Cauchy integral (A.8)

ln FðzðþÞÞ ¼ � 1

2pi

Z
D
ln RðzÞ dOðz; zðþÞ; zð�ÞÞ þ ln Fðzð�ÞÞ:

Finally, substituting the explicit expression for the meromorphic differential (A.9),
we have

ln FðzðþÞÞ ¼ � 1

4pi

Z
D
ln RðzÞ dOðz; zðþÞ; zð�ÞÞ

¼ � 1

4pi

Z
D

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p 1

z� z
ln RðzÞ dz:

Let us denote by wðzÞ a branch of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p
on C\½�1; 1� such that

wðxÞ ¼ ðx2 � 1Þ
1
240 for xAð1;N�: ð9Þ
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Then we have

ln F ðþÞðzÞ ¼ 1

4pi

Z
D

wðzÞffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p 1

z � z
ln RðzÞ dz

¼ 1

4pi

Z 1

�1

wðzÞ
wðxÞþ

ln RðxÞ
z � x

dx þ 1

4pi

Z 1

�1

wðzÞ
wðxÞ�

ln RðxÞ
z � x

dx

¼ 1

2pi

Z 1

�1

wðzÞ
wðxÞþ

ln RðxÞ
z � x

dx:

The function

F ðþÞðzÞ ¼ exp � 1
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p Z 1

�1

ln RðxÞ
z � x

dxffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
� 


ð10Þ

is the reciprocal of the so-called Szego+ function, which satisfies the boundary
condition (8) and is normalized at infinity as

F ðþÞðNÞ ¼ exp � 1
2p

Z 1

�1

ln RðxÞ dxffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
� 


:

Thus we obtained

jðzÞ ¼ FnðzÞF ðþÞðzÞ; jðzÞj
N

¼ F ðþÞðNÞð2zÞn þ?; ð11Þ
where F and F are given by (7) and (10).

3. Strong asymptotics for Padé approximants of a Markov function with complex

weight

3.1. Jump condition for Padé approximants

We consider a Markov function

bRRðzÞ :¼ 1

2p

Z 1

�1

RðxÞ
z � x

dxffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p ð12Þ

and its Padé approximants: a polynomial denominator Q; a polynomial numerator P;
and the remainder function R such that

1: degQ; deg Ppn; Rjz-N
¼ O

1

znþ1

� �
;

2: QbRRþ P ¼ R:

ð13Þ

We assume that R satisfies the conditions of Section 2. Also, for the moment, we will
assume that the complex-valued function R is such that degQ ¼ n: Later on we will
show that this is always the case for large enough n: This was already proved by
Magnus [12], who also proved the convergence of the Padé approximants using
Toeplitz matrix techniques. We take the normalization of Q as

QðzÞ ¼ zn þ? :
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From the definition of a Markov function (12), we have by the Sokhotsky–Plemelj
(or Stieltjes–Perron) formula

bRRþ � bRR� ¼ R
wþ

on ½�1; 1�;

which gives us the jump condition for the remainder function (this follows from
definition (13))

Rþ � R� ¼ Q
R

wþ
on ½�1; 1�: ð14Þ

3.2. Riemann problem on R for Padé approximants and its solution

We have from (14) and (9)

ðwRÞþ � QR ¼ �ðwRÞ� on ½�1; 1�: ð15Þ

The idea of what follows is: using the decomposition of R by means of the auxiliary
BVP considered in Section 2, we rewrite the above jump condition as a jump for

functions analytic in C\½�1; 1�; for which the Riemann problem on R can be stated
and solved, giving as a result an integral equation for the remainder function R: The
analysis of this integral equation leads to the asymptotics for Q and R: So, (15) and
(1) give us on ½�1; 1�

R ¼ c�
jþ

) ðwRjÞþ � ðQcÞ� ¼ �jþðwRÞ�

and

R ¼ cþ
j�

) ðwRjÞ� � ðQcÞþ ¼ �j�ðwRÞþ:

Thus, for the functions

ðwRjÞ; ðQcÞAHðC\½�1; 1�Þ;

we have the following jump condition:

ðwRjÞ7 � ðQcÞ8 ¼ �cwR

R

� �
8

:

We define on R

f ðzÞ :¼ wðzÞRðzÞjðzÞ; zARðþÞ;

QðzÞcðzÞ; zARð�Þ:

(
Then for f we have the following Riemann problem (see (A.7)) on R:

1: fAHðR\DÞ;
2: fþ � f� ¼ j� on D :¼ f½�1; 1�þ,½�1; 1��gCRðþÞ;

3: f ðNð�ÞÞ ¼ cn;

8><>: ð16Þ
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where

j ¼ � cwR

R

� �
on Rð�Þ-p�1ðdÞ

and

cn ¼ F ð�ÞðNÞ
2n

¼ 1

2n
exp

1

2p

Z 1

�1

ln RðxÞ dxffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
� 


:

The solution of this problem (see (A.8)) is

f ðzÞ ¼ 1

2pi

Z
D

jðzÞ dOðz; z;Nð�ÞÞ þ cn; ð17Þ

where the explicit expression for the differential dO is given in (A.12). If we consider
(17) for zARðþÞ; we get an integral equation for R:

Now an important point! Taking into account that the jump function jðzÞ has an
analytic continuation from D to the Rð�Þ sheet, we can deform the contour D to the
contour D0 ¼ fz : jFðzÞj2 ¼ 1� e; e40gCRð�Þ-p�1ðdÞ; and for z outside a ring A;
bounded by D and D0; we have (see Remark A.1 in Appendix, Section A.1)

f ðzÞ ¼ 1

2pi

Z
D0

jðzÞ dOðz; z;Nð�ÞÞ þ cn; zAR\A: ð18Þ

3.3. Outer asymptotics for Q

First we estimate jjRjjCðDÞ: We denote Mn :¼ jjwRjjjCðDÞ: Consider Eq. (18) for

zARðþÞ
\D

ðwRjÞðzÞ ¼ � 1

2pi

Z
D0

wcR

R

� �
ðzÞ dOðz; z;Nð�ÞÞ þ cn: ð19Þ

Note that the integral here is not singular anymore, therefore wRj has a continuous
limit on D and (19) is valid also for zAD: Thus, (19) implies

Mn ¼ jðwRjÞðz0Þj ¼
1

2p

Z
D0
ðwRjÞðzÞ c

Rf

� �
ðzÞ dOðz; z0;N

ð�ÞÞ þ cn

���� ����
for some z0AD: Taking into account the expression for c

j (see (7) and (11)) and the

fact that dO has no singularities in Rð�Þ
\ðD,fNð�ÞgÞ; we find

MnpMnCð1� eÞn þ cn ) Mnp
cn

1� Cð1� eÞn: ð20Þ

Now we can get the asymptotics of Q on compact sets KCC\½�1; 1�: Fix K and choose

e such that KCC\A: Considering (18) for zARð�Þ
\A; we have

ðQcÞðzÞ � cn ¼ � 1

2pi

Z
D0
ðhjRÞðzÞ c

Rj

� �
ðzÞ dOðz; z;Nð�ÞÞ:
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Therefore,

jjQc� cnjjCðKÞp eCCMnð1� eÞnpcn

eCC
1� Cð1� eÞnð1� eÞn:

Dividing by cn; we obtain the desired asymptotics:

ðQcÞðzÞ
cn

¼ 1þ Oðqn
KÞ; qKo1;

or

QðzÞ ¼ cnjðzÞð1þ Oðqn
KÞÞ:

3.4. Asymptotics on ½�1; 1�: statement of the theorem

As we already mentioned, the integral equation (19) remains valid for zAD: Thus

fþðzÞjzAD ¼ � 1

2pi

Z
D0
ðwRjÞðzÞ c

Rj

� �
ðzÞ dOðz; z;Nð�ÞÞ þ cn:

Therefore, for zAD

jfþðzÞ � cnj ¼
1

2p

Z
D0
ðwRjÞðzÞ c

Rj

� �
dOðz; z;Nð�ÞÞ

���� ����
pMnCð1� eÞnpcn

Cð1� eÞn

1� Cð1� eÞn:

So, we have obtained uniform asymptotics for the remainder RðzÞ on the interval
½�1; 1�:

fþðxÞ
cn

����
xAD

¼
ðwRjÞ7ðxÞ

cn

����
xA½�1;1�

¼ 1þ OðqnÞ;

where 0oqo1 and q depends on the size of the domain of analyticity of RðzÞ;
(i.e., on d).
Now, for the polynomials Q we have from the boundary value Padé problem (15)

Q ¼ wR

R

� �
þ
þ wR

R

� �
�
on ½�1; 1�

and because of

ðwRÞ7
R

¼ cn

j7R
ð1þ OðqnÞÞ ¼ cn

c8
ð1þ OðqnÞÞ ¼ cnj8ð1þ OðqnÞÞ;

we finally obtain (taking into account the boundedness of j on ½�1; 1�)
Q

cn

¼ jþ þ j� þ OðqnÞ on ½�1; 1�:

Now we can make the following remark about the normality of Padé
approximants. We can omit our assumption for R that degQ ¼ n; for n large
enough. Indeed, if degQon; then everything above remains valid apart from
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condition 3 in the Riemann problem (16), which becomes

30 FðNð�ÞÞ ¼ cn ¼ 0;

but this leads to a contradiction with (20) for large n:
Thus we have proved the following theorem:

Theorem 1. Let R be a non-vanishing complex valued function on ½�1; 1�; which is

analytic in some d neighborhood of ½�1; 1�: Then for the Markov function

bRRðzÞ :¼ 1

2p

Z 1

�1

RðzÞ
z � z

dzffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
and sufficiently large n, there exists a unique polynomial Q; with QðzÞ ¼ zn þ?; such

that

QbRRþ P ¼ R; deg P ¼ n � 1; RðzÞjz-N
¼ O

1

znþ1

� �
:

The polynomial Q and the remainder function R have the following asymptotic

formulas:

1Þ QðzÞ
cnjðzÞ

¼ 1þ Oðqn
K ;RÞ; zAKCC\½�1; 1�;

QðxÞ
cn

¼ jþðxÞ þ j�ðxÞ þ Oðqn
RÞ; xA½�1; 1�;

2Þ R7ðxÞ
cn

¼ 1

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
jðxÞÞ7

þ Oðqn
RÞ; xA½�1; 1�;

where

jðzÞ ¼ ðz þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p
Þn exp � 1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p Z 1

�1

ln RðxÞ
z � x

dxffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
� 


and

cn ¼ 1

2

� �n

exp
1

2p

Z 1

�1

ln RðxÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p dx

� 

:

The constants qK ;R; qR are such that 0oqK ;R; qRo1 and depend on the compact set K

and on the size of the domain of analyticity of R (i.e., on d).
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4. Strong asymptotics for polynomials with respect to a varying weight

4.1. Conditions on the varying weight. Equilibrium in external field. Statement of the

problem

Here we assume the weight generating a Markov function in (12) has a dependence
on n of the form

rn :¼ e�2nqnr; rAHðdÞ; ra0 on ½�1; 1�Cd

and for qn we assume

jjqn � qjjCðdÞ ¼ O
1

n

� �
; qnAHðdÞ; Iq ¼ 0 on ½�1; 1�:

These settings for rn can be rewritten as
rn ¼ e�2nq *rn; rnAHðdÞ; rna0 in d

and
jj *rn � rjjCðdÞ ¼ Oð1Þ:

We note that for further consideration it is enough to assume that f *rng is a compact
family in HðdÞ:
Next we have to put extra conditions on q: For this we consider the equilibrium

problem in the presence of the external field q for the logarithmic potential

VmðzÞ ¼ �
Z 1

�1
ln jx � zj dmðxÞ

of positive probability measures mAMþð½�N;N�Þ; supported on ½�1; 1�: It is well-
known (see [9,15]) that there exists a unique measure l (called equilibrium measure in

external field) such that

Vl þ q ¼
g on supp l;

Xg on ½�1; 1�:

�
ð21Þ

In what follows we assume

q is such that supp l ¼ ½�1; 1�: ð22Þ

Remark. A sufficient condition for (22) is convexity of q on ½�1; 1�: It is not so
difficult to see (see, for example [9]), that (22) and qAHðdÞ imply absolute continuity
of l and

l0AAðd\ðf�1g,fþ1gÞÞ;
i.e., l0 has analytic continuation in the punctured (at71) domain d: In what follows
we assume more, namely that

q is such that l0ðzÞ ¼ mðzÞffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p ; mAHðdÞ; mð71Þa0: ð23Þ
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Remark. If the equilibrium measure for the problem on MþðIÞ; for some I :
½�1; 1�CICd has its support equal to I ; then condition (23) is fullfiled. A proof of
these remarks can be found in [9]. We also mention that if q is a convex analytic
function on d-R; then both our extra conditions (22) and (23) hold true (this follows
from the previous two remarks).

Now we state a problem about polynomials orthogonal with respect to the varying
weight. These polynomials have a variety of very important applications(see, e.g.,
[19]). Suppose the family of Markov functions

#rnðzÞ ¼
1

2p

Z 1

�1

rnðxÞ dx

ðz � xÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p

is generated by the family of weight functions of the form

rn ¼ e�2nq *rn; rnAHðdÞ; rna0 in d; Iq ¼ 0 on ½�1; 1�;

where q is such that the equilibrium measure l of problem (21) satisfies conditions
(22), (23) and f *rng is a compact family in HðdÞ: For each n we consider Padé
approximants of index n to the function #rn

QnðzÞ ¼ zn þ?; Qn #rn þ Pn ¼ Rn ¼ O
1

znþ1

� �
:

The polynomial denominators Qn satisfy the following orthogonality relations:Z 1

�1
QnðxÞrnðxÞxn dx ¼ 0; n ¼ 0;y; n � 1:

The investigation of the strong asymptotics for these polynomials Qn and for the
remainder function Rn goes along the same lines as we did in the previous chapter for
non-varying weight. Only two new ingredients will be introduced. In the next section,
using the equilibrium problem (21) we present another expression for the solution of
the auxiliary BVP (1) for a varying weight. Then in Section 4.3 we do a more delicate
analytic continuation of the jump function for the remainder function’s Riemann

problem (16) on the second sheet Rð�Þ of the Riemann surface.

4.2. Another representation for the solution of the auxiliary BVP for varying weight rn

Here we consider the solution of BVP problem (1) for the varying weight rn: As we
know (see (11) and (10)) the solution is

jðzÞ ¼ FnðzÞexp � n

2pi

Z 1

�1

wðzÞ
wþðxÞ

2qðxÞ
z � x

dx þ 1

2pi

Z 1

�1

wðzÞ
wþðxÞ

ln *rnðxÞ
z � x

dx

� 

;

cðzÞ ¼ 1

jðzÞ:
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We denote by G ¼ lnF the complex Green function, H is the first integral in the

exponential above and F ð *rnÞ stands for the last multiplier of j:

j ¼: expfnðG � HÞgF ð *rnÞ ð24Þ

We will also use the notation

F ðrqÞ :¼ e�H jðqÞ :¼ expfnðG � HÞg and cðqÞ ¼ 1

jðqÞ:

From (3) and (8) it follows that on ½�1; 1�

jðqÞ
þ jðqÞ

� e�2nq ¼ 1;

F
ðrqÞ
þ F ðrqÞ

� e�2q ¼ 1: ð25Þ

The last relation gives us

Hþ þ H� þ 2q ¼ 0 on ½�1; 1�;

which, taking into account the symmetry with respect to R leads to

RH þ q ¼ 0 on ½�1; 1�:

Thus the harmonic function

h :¼ RH in C

gives a solution of the Dirichlet problem

h :
hA HarmðC\½�1; 1�Þ
h ¼ �q on ½�1; 1�:

(
ð26Þ

Now we turn to the equilibrium problem (21)

VlðxÞ þ qðxÞ ¼ g; xA½�1; 1�:

Using a Green function gðzÞ of the domain C\½�1; 1�:

g :

gAHarmðC\½�1; 1�Þ;
g ¼ lnjzj þ C þ? near z ¼ N;

g ¼ 0 on ½�1; 1�;

8><>:
and the solution of the Dirichlet problem (26), we rewrite the equilibrium relation as

VlðxÞ � g ¼ hðxÞ � gðxÞ; xA½�1; 1�:

In fact the above relation holds not only on ½�1; 1�; but on the whole C: Indeed, the
difference between the right and the left-hand sides of the relation is a harmonic

function on C\½�1; 1� (the singularities at N are canceled) and its boundary values
on ½�1; 1� are equal to zero, therefore by the maximum principle for harmonic

functions, we have that the difference is zero on C: Thus

VlðzÞ � g ¼ hðzÞ � gðzÞ; zAC ð27Þ
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and adding complex conjugate functions to (27), we obtain an identity

VlðzÞ � g ¼ HðzÞ � GðzÞ;

where Vl stands for the complex potential of the measure l:
Thus, substituting the obtained identity in (24), we have a new representation for

the solution of BVP problem (1) for r :¼ rn

j ¼ jðqÞF ð *rnÞ ¼ expfnðg� VlÞgF ð *rnÞ;

c ¼ 1
j
:

8<: ð28Þ

4.3. Integral equation for the remainder function for the case of a varying weight

As in the case of a non-varying weight we can use the function satisfying the
auxiliary BVP (1) with rn to arrive at the integral equation (see (17))

fnðzÞ ¼ � 1

2pi

Z
D

cwRn

rn

� �
ðxÞ dOðx; z;Nð�ÞÞ þ Cn; zAR;

where

fn ¼ wRnj on RðþÞ;

Qc on Rð�Þ

(
ð29Þ

and as contour D we choose a cut along the upper and lower sides of the interval
½�1; 1�CRð�Þ with negative orientation with respect to the Rð�Þ direction.
As before we would like to deform the contour D to the inside of the second sheet

Rð�Þ using analytic continuation of the jump function. The aim of this section to
show that, under our conditions on the varying weight, the analytic continuation of

the jump cwRn

rn

� 	
on the contour D0CRð�Þ

\½�1; 1� decreases exponentially when
n-N: We consider the analytic continuation of

cwRn

rn

¼ wRn

c

� �
c2

rn

� �
from ½�1; 1�7 to C

and will pay special attention to the continuation of the second factor. Taking into
account the multiplicative dependence of the solution of BVP (10) on weight
functions, and using the notation of the previous subsection, we have

c2

rn

¼ ðF ð *rnÞÞ�2

*rn

ðcðqÞÞ2

e�2nq
on ½�1; 1�7:

We consider the continuation of the second factor. We have (see (25))

cðqÞ
7

� 	2
e�2nq

¼
cðqÞ
7 jðqÞ

8

jðqÞ
7 jðqÞ

8 e�2nq
¼ cðqÞ

7 jðqÞ
8 ¼

jðqÞ
8

jðqÞ
7

on ½�1; 1�
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and applying the new representation for the solution of BVP (28) for a varying
weight, we find

cðqÞ
7

� 	2
e�2nq

¼ expf�nðVl8 � Vl7Þg on ½�1; 1�

and because of the symmetry with respect to R; we have

cðqÞ
7

� 	2
e�2nq

¼ expf2ni IVl7g; on ½�1; 1�:

Now we shall prove that under condition (23) a function

c ¼ 1
p

IVl on ½�1; 1�7 ð30Þ

has a holomorphic continuation to fd\½�1; 1�g and for some *dCd

IcðzÞ40; zA*d\½�1; 1�: ð31Þ

We do this in three steps.

1. First we present an expression for the function cðxÞ; xA½�1; 1�: We have

V7ðlÞ ¼ �
Z 1

�1
lnðz � tÞl0ðtÞ dt ¼ �

Z 1

�1
ln jz � tjl0ðtÞ dt

� i

Z 1

�1
argðz � tÞl0ðtÞ dt:

Fixing a branch argðxÞ ¼ 0; x40 we analytically continue the above formula from
some point zA½1;N� to some point xA½�1; 1� along some path belonging to the
upper half plane and along some path from the lower half plane. As a result we
will have

V7ðxÞ ¼ VðxÞ8ip
Z 1

x

l0ðtÞ dt; xA½�1; 1�:

Thus

c7ðxÞ ¼ 8

Z 1

x

l0ðtÞ dt:

2. Then we see that the function

cðzÞ ¼ �
Z 1

z

l0ðxÞ dx ð32Þ

gives a holomorphic continuation of c7ðxÞ in the upper and lower neighborhood
of ½�1; 1�:We denote these lense-shaped simply connected domains as *dþ and *d�:
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There the function cðzÞ is a primitive of the holomorphic branch of the analytic
function l0ðzÞ

c7ðzÞ :¼ �
Z 1

z

l0ðxÞ dx; zA*d7:

Using a local representation of cðzÞ in the neighborhoods Oþ1 and O�1 of the end
points of ½�1; 1� (which follows from (32) and (23))

cðzÞ ¼ mþ1ðzÞ
ffiffiffiffiffiffiffiffiffiffiffi
1� z

p
; mþ1AHðOþ1Þ; Imþ1 ¼ 0 on R-Oþ1; zAOþ1;

m�1ðzÞ
ffiffiffiffiffiffiffiffiffiffiffi
z � 1

p
; m�1AHðO�1Þ; Im�1 ¼ 0 on R-O�1; zAO�1:

(
ð33Þ

we see that analytic continuation cþðzÞ from *dþ to some point xAR such that
xAððQþ1,O�1Þ\½�1; 1�Þ-RÞ coincides with the analytic continuation of c�ðzÞ
from *d� to the same point x: Thus the function (32) is holomorphic in a
neighborhood of ½�1; 1�

cAHð*d\½�1; 1�Þ; *d :¼ *dþ,*d�,Oþ1,O�1

and satisfies the boundary condition (30) on ½�1; 1�:
3. It remains to check (31). In the domains *dþ and *d� inequality (31) is true because
of the Cauchy–Riemann equations

@Ic

@y
¼ @Rc

@x
¼ l0ðxÞ40:

To check (31) in the domain ðOþ1,O�1Þ\½�1; 1�; we use the local representation
(33) of cðzÞ there. Take for example Oþ1; we can choose Oþ1 small enough such
that the argument of mþ1 (which is zero on R-Oþ1) does not make a substantial
contribution to the argument of cðzÞ; so

arg c�ðxÞ ¼ 0oarg cðzÞop ¼ arg cþðxÞ; zAOþ\½�1; 1�; xA½�1;þ1�:

Thus

Ic40 in ðOþ,O�1Þ\D

and we have (31) for c given by (32).

Summarizing our transformations of the jump function in (29), we have

j ¼ wcRn

rn

¼ wRn

c
J; J :¼ ðF ð *rnÞÞ�2

*rn

e2nic on D ¼ ½�1; 1�7CR:

So now we can lift the domain *d on the sheet Rð�Þ; we denote it by

*Dð�ÞCRð�Þ; pð *Dð�ÞÞ ¼ *d
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and using analytic continuation of j to *Dð�Þ it is possible to deform contour D in (29)
to some contour D0C *Dð�Þ:

fnðzÞ ¼ � 1

2pi

Z
D0

wRn

c
ðxÞJðxÞ dOðx; z;Nð�ÞÞ

� �
þ Cn; zAR\A; ð34Þ

where ACRð�Þ is a ring domain bounded by D,D0:

Finally, taking into account compactness of *rn in Hð*dÞ and (31) we have
jjJjjCðD0ÞpCkn; ko1; ð35Þ

where the constants C and k depend on analytic properties of the varying weight rn:

4.4. Statement of the theorem (for varying weight)

Thus using estimation (35) in the integral equation (34) and repeating all
arguments we used to prove the corresponding theorem for the non-varying weight,
we arrive at the following theorem

Theorem 2. Let frng be a family of holomorphic functions in the domain d*½�1; 1�
rn ¼ e�2nq *rn; rnAHðdÞ; rna0 in d*½�1; 1�;

where f *rng is a compact family in HðdÞ; and q is real valued on ½�1; 1�;
Iq ¼ 0 on ½�1; 1�:

Furthermore, rn is such that the equilibrium measure l in the external field q

Vl þ q ¼
g on supp l;

Xg on ½�1; 1�

�
is absolutely continuous on supp l ¼ ½�1; 1� and its derivative has the form

l0ðxÞ ¼ mðxÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p ; mAHðdÞ; mð71Þa0:

Then for sufficiently large n; there exists a unique polynomial

QnðzÞ ¼ zn þ? ;

which is orthogonal with respect to the weight function rnZ 1

�1
QnðxÞxn rnðxÞ dxffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p ¼ 0; n ¼ 0;y; n � 1

and for the polynomials Qn and the functions of the second kind

RðzÞ ¼
Z 1

�1

QnðxÞ
z � x

rnðxÞ dxffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p

the following asymptotics formulas hold:

QnðzÞ
cnjðzÞ

¼ 1þ Oðkn
KÞ; zAKCC\½�1; 1�;
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QnðxÞ
cn

¼ jþðxÞ þ j�ðxÞ þ Oðkn
1Þ; xA½�1; 1�

R7ðxÞ
cn

¼ 1

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
jðxÞÞ7

þ Oðkn
2Þ; xA½�1; 1�;

where the constants kAð0; 1Þ; j; and cn are

jðzÞ ¼ enðg�VlðzÞÞ exp � 1
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p Z 1

�1

ln *rnðxÞ dx

ðz � xÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
( )

cn ¼ e�ng exp

Z 1

�1

ln *rnðxÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p dx

� 

;

and

g ¼ ln 2þ 1
p

Z 1

�1

qðxÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p dx:

5. A matrix Riemann–Hilbert problem approach

We start here with the matrix Riemann–Hilbert problem formulation of the
orthogonality relations. Then we recall the auxiliary boundary value problem, which
we studied in Section 2 and which will be used here for the normalization of the
matrix Riemann–Hilbert problem. Next, according to Deift [3], we proceed with the
transformation of the original matrix Riemann–Hilbert problem to a problem with a
jump matrix function which tends to the identity matrix as n (the degree of the
polynomials) tends to infinity. Finally, to make the presentation self contained, we
give a proof of the lemma stating that, if the jump matrix for the matrix valued
homogeneous Riemann–Hilbert problem tends to the identity matrix, then the
solution also tends to the identity matrix. At this point, we again take a shortcut by
assuming that the jump matrix is analytic, it is possible for us to give a trivial proof,
just based on the Cauchy theorem, without applying the harmonic analysis which
was used in its original version in [3].

5.1. Orthogonal polynomials and a matrix Riemann–Hilbert problem

Let

QnðxÞ :¼ xn þ?

be a monic orthogonal polynomialZ 1

�1
QnðxÞxkhðxÞ dx ¼ 0; k ¼ 0;y; n � 1; ð36Þ
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with respect to a weight function h; which we assume to have the form

hðxÞ :¼ RðxÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p ; xA½�1; 1�; ð37Þ

where R is a complex valued function, non-vanishing on ½�1; 1�; which is
holomorphic in some domain d containing the interval ½�1; 1�:

Ra0 on ½�1; 1�; RAHðdÞ; ½�1; 1�Cd: ð38Þ

Let Rn be the function of the second kind associated with Qn:

RnðzÞ ¼
1

2pi

Z 1

�1

QnðxÞhðxÞ dx

x � z
; RnAHðC\½�1; 1�Þ: ð39Þ

It is easy to verify that the orthogonality relations for Qn are equivalent to the fact
that

RnðzÞ ¼ O
1

znþ1

� �
; z-N: ð40Þ

As before (see Section 3), our starting point is the Sokhotsky–Plemelj formula for
the boundary values of a Cauchy type integral, which we apply to the function of the
second kind (39)

Rnþ � Rn� ¼ hQn on ½�1; 1�: ð41Þ

Here, as usually, (+) denotes the boundary values of the function from the upper
side of ½�1; 1�; and ð�Þ from the lower side. Choosing m as a normalization constant
so that

mRn�1 ¼
1

zn
þ?; z-N;

i.e.,

m ¼ � 2piR 1
�1 Q2n�1ðxÞhðxÞ dx

and applying (41) to Rn�1; then for the matrix valued analytic function

Y ¼
Qn Rn

mQn�1 mRn�1

� �
; ð42Þ

we obtain the following Riemann–Hilbert problem:

Y :¼

YAHðC\½�1; 1�Þ;

YðzÞ ¼ I þ O
1

z

� �� �
diagðzn; z�nÞ as z/N;

Yþ ¼ Y�
1 h

0 1

� �
on ½�1; 1�:

8>>>>><>>>>>:
ð43Þ

Our goal is to show that solution (42) of (43), which depends on n; tends as n-N

to a solution of some boundary value problem which does not depend on n:
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First we mention that our restriction for the weight function to be of the form (37)
and (38) allows us to make an analytic continuation of hðxÞ in the domain d\½�1; 1�

hðzÞ :¼ RðzÞ

iðz2 � 1Þ
1
2

AHðd\½�1; 1�Þ; ð44Þ

where the branch for ðz2 � 1Þ
1
2 is chosen such that

ðz2 � 1Þ
1
240 for z41:

It gives for the limiting values of hðzÞ

h7ðxÞ ¼ 8
RðxÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p on ½�1; 1�

and if we denote

WðzÞ ¼
1 hðzÞ
0 1

� �
;

then we have

W� ¼
1 h

0 1

� �
; Wþ ¼

1 �h

0 1

� �
¼ W�1

� : ð45Þ

The latter remarkable relation allows us to present the jump condition in (43) as

Yþ ¼ Y�W� or Y� ¼ YþWþ on ½�1; 1�:

5.2. Auxiliary boundary value problem recall

Before stating an asymptotic result for the solution of the matrix Riemann–Hilbert
problem, we recall the auxiliary BVP which we studied in Section 2. In terms of the
solution of this BVP we will write an answer (i.e., final asymptotic formulas) and the
properties of the solution will be used in the proof. The problem consist on finding j
such that

j :

jAHðC\½�1; 1�Þ; (jþ;j�ACð½�1; 1�Þ;

jðzÞ ¼ OðznÞ; z-N;
jðzÞ

zn

����
N

40;

jþj�R ¼ 1 on ½�1; 1�:

8>>><>>>: ð46Þ

The unique solution of problem (46) is (see (10) and (11))

jðzÞ ¼ ðz þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p
Þn exp � 1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p Z 1

�1

ln RðxÞ
z � x

dxffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
� 


ð47Þ

and the normalization constant for jj
N

¼ zn

c
þ? is

c ¼ 1

2n
exp

1

2p

Z 1

�1

ln RðxÞffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p dx

� 

: ð48Þ
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We also note that the scalar problem (46) admits several equivalent reformulations,
i.e., the vector version

ðj;cÞAHðC\½�1; 1�Þ;
ðj;cÞðzÞ ¼ zn

c
þ?; c

zn þ?
� �

for some c40; n-N;

ðj;cÞþ ¼ ðj;cÞ�
0 R

R�1 0

� �
on ½�1; 1�

8>>><>>>:
and the matrix version

C ¼
0 j

c 0

� �
; j;c as above;

Cþ ¼ CT
�

R 0

0 R�1

� �
:

8>>><>>>:
We are not going to use these versions here and mention them just for completeness.

5.3. Statement of the asymptotic result

Here we prove the following

Theorem 3. Suppose that the weight function (37) satisfies conditions (38). Then for the

matrix Y (see (42)) of the orthogonal polynomials (36) and for the functions of the

second kind (39), the following asymptotic formula holds:

CYSðzÞ ¼ I þ OðqnÞ
z

� �
X ; n-N; 0oqo1; ð49Þ

uniformly outside any Jordan contour GCd around ½�1; 1�; and

CYSðzÞ ¼ ðI þ OðqnÞÞXD�1; ð50Þ
uniformly inside the domain bounded by G; where

C ¼ diagðc�1; cÞ; S ¼ diagðj�1;jÞ ð51Þ

are given by (46) and (48), and

D ¼
1 0

ðhj2Þ�1 1

� �
;

X ¼

1 i

z2�1ð Þ
1
2

z�ðz2�1Þ
1
2

� 	
2i

zþ z2�1ð Þ
1
2

2 z2�1ð Þ
1
2

0BBBB@
1CCCCA:
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The matrix asymptotic formulas (49) and (50) lead to the following
asymptotic formulas for the polynomials Qn and for the functions of the second
kind Rn

1:
QnðzÞ
cjðzÞ ¼ 1þ OðqnÞ; zAKCC\½�1; 1�;

QnðxÞ
c

¼ jþðxÞ þ j�ðxÞ þ OðqnÞ; xA½�1; 1�;

2:
Rn7ðxÞ

c
¼ 1

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
jðxÞÞ7

þ OðqnÞ; xA½�1; 1�:

5.4.. Proof of the theorem

1. First we normalize the Riemann–Hilbert problem (43), forcing the solution to be
holomorphic at N: We define (see (42) and (51))

Z :¼ CYS ¼

Qn

cj
Rnj

c

cmQn�1
j

cmjRn�1

0BB@
1CCA: ð52Þ

Now the matrix-valued function Z is holomorphic in C\½�1; 1� and it satisfies the
following Riemann–Hilbert problem:

ZAHðC\½�1; 1�Þ;
Zþ ¼ Z�J on ½�1; 1�;
ZðzÞ ¼ I þ O 1

z

� �
as z-N;

8><>: ð53Þ

where the jump matrix J; because of

ðC�1ZS�1Þþ ¼ ðC�1ZS�1Þ�W� on ½�1; 1�

is given by

J ¼ S�1
� W�Sþ ¼

j�
jþ

jþj�h

0
jþ
j�

0BB@
1CCA on ½�1; 1�:
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Our choice of the solution of the auxiliary BVP (46) for the normalization of
problem (43) gives

J ¼
j�
jþ

1ffiffiffiffiffiffiffiffi
1�x2

p

0
jþ
j�

 !
on ½�1; 1�:

This ‘lucky’ expression for the jump matrix of problem (53) allows us to
decompose it as

J ¼
1 0

jþ
j�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
1

 !
0

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
0

0B@
1CA 1 0

j�
jþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
1

 !

¼
1 0
1

ðhj2Þ�
1

0@ 1A 0
1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
0

0B@
1CA 1 0

�1
ðhj2Þþ

1

0@ 1A: ð54Þ

We see that the first matrix here admits an holomorphic continuation in the lower
half of the complex plane and the last matrix does the same in the upper half
plane. After the analytic continuation, and because of the exponential decrease of

j�1 outside ½�1; 1� as n-N; we see that J will be close to a very ‘friendly’ central
matrix. This is the essence of the method!

2. Now, in order to develop this idea about the analytic continuation of the parts of
the jump, we transform the Riemann–Hilbert problem (53) into the following
problem. We denote

D :¼
1 0

ðhj2Þ�1 1

� �
AHðd\½�1; 1�Þ ð55Þ

and let G be a contour in d such that D :¼ ½�1; 1� is in the domain IntðGÞ which is
bounded by G andNeIntðGÞ:

GCd; DA IntðGÞ:

We define

eZZ ¼
Z in OutðGÞ :¼ C\IntðGÞ;
ZD in IntðGÞ:

�
ð56Þ

For eZZ we have on GeZZþ ¼ eZZ�D

and on ½�1; 1� this eZZ satisfiesfZþZþ ¼ ZþDþ ¼ Z�JDþ ¼ Z�D�D�1
� JDþ ¼ eZZ�ðD�1

� JDþÞ:

ARTICLE IN PRESS
A.I. Aptekarev, W. Van Assche / Journal of Approximation Theory 129 (2004) 129–166 153



If we substitute here the decomposition of J from (54), we see that

D�1
� JDþ ¼D�1

� D�
0

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
0

0B@
1CA 1 0

� 1

ðhj2Þþ
1

0@ 1A 1 0
1

ðhj2Þþ
1

0@ 1A

¼
0

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
0

0B@
1CA:

Denoting the last matrix as

j :¼
0

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
0

0B@
1CA;

we conclude that the matrix function eZZ from (56) is a solution of the following
Riemann–Hilbert problem

eZZAHðC\f½�1; 1�,GgÞ; GCd; ½�1; 1�CIntðGÞ;eZZþ ¼ fZ�Z�D on G;eZZþ ¼ eZZ�j on ½�1; 1�;eZZðzÞ ¼ I þ O 1
z

� �
as z-N:

8>>>><>>>>: ð57Þ

3. The next step is to consider the limiting problem for (57), i.e., without the jump on
G; because, as we already mentioned, this jump function tends to the identity
matrix as n-N: We consider the following Riemann–Hilbert problem for the
determination of the function X :

XAHðC\½�1; 1�Þ;
Xþ ¼ X�j on ½�1; 1�;
X ðzÞ ¼ I þ O 1

z

� �
; as z-N:

8><>: ð58Þ

Writing the entries for the matrix jump condition

x11þ x12þ

x21þ x22þ

� �
¼

�x12�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p x11�ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p

�x22�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p x21�ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p

0B@
1CA;

we see that matrix-valued Riemann–Hilbert problem (56) reduces to two scalar
problems
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x11; x12AHðC\½�1; 1�Þ;
x11ðzÞ ¼ 1þ O 1

z

� �
as z-N;

x12 ¼ O 1
z

� �
as z-N;

x11þ ¼ x12�ð�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
Þ on ½�1; 1�;

x11� ¼ x12þð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
Þ on ½�1; 1�

8>>>>>><>>>>>>:
ð59Þ

and

x21; x22AHðC\½�1; 1�Þ;
x21ðzÞ ¼ O 1

z

� �
as z-N;

x22 ¼ 1þ O 1
z

� �
as z-N;

x21þ ¼ x22�ð�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
Þ on ½�1; 1�;

x21� ¼ x22þð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
Þ on ½�1; 1�:

8>>>>>><>>>>>>:
ð60Þ

Note that, in accordance with the chosen branch of ðz2 � 1Þ
1
2; we have

1

i
ðz2 � 1Þ

1
2
8 ¼ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
on ½�1; 1�;

therefore

x117 ¼ 1

i
x12ðz2 � 1Þ

1
2

� �
8

and x217 ¼ 1

i
x22ðz2 � 1Þ

1
2

� �
8

:

Thus the function 1
i
x12ðz2 � 1Þ

1
2

� �
is the analytic continuation of the function x11

on the second sheet of the Riemann surface, obtained from the two extended
complex planes cut along the interval ½�1; 1� and pasted together ‘cross by cross’.

Analogously, the function 1
i
x22ðz2 � 1Þ

1
2

� �
is the analytic continuation of x21 on

the second sheet of the Riemann surface. If we choose, in accordance with the
normalization at infinity,

x11 � 1 in C\½�1; 1�;

then its continuation on the second sheet will again be equal to the constant
function 1, which gives

x12 ¼
i

ðz2 � 1Þ
1
2

:

Checking the normalization of x12 atN; we see that x11 and x12 as above satisfy
the problem in (59).
As for the problem in (60), we have to find the function x21 having a zero at

infinity, and the analytic continuation of x21 on the second sheet of the Riemann
surface which needs to have a pole at infinity (because x22 is regular at N and

ðz2 � 1Þ
1
2 has a pole over there). The choice of x21 as
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x21 ¼
ðz � ðz2 � 1Þ

1
2Þ

2i

satisfies these conditions. Then

x22 ¼
ðz þ ðz2 � 1Þ

1
2Þ

2ðz2 � 1Þ
1
2

and the verification of the normalization of x22 at infinity x22 ¼ 1þ O 1
z

� �
shows

that we have found the solution for the problem in (60). Hence

X ¼
1 i

z2�1

ðz�ðz2�1ÞÞ
1
2

2i
ðzþðz2�1ÞÞ

1
2

2ðz2�1Þ
1
2

0BB@
1CCA ð61Þ

is a solution for problem (58).
4. Finally, we have to show that the solution of the Riemann problem with a jump
on G close to the identity (see (56)), which presents orthogonal polynomials and
functions of the second kind (see (55),(56) and (52)), tends as n-N to the
solution of the problem (58) without the jump on G; which is the matrix function
(61). To do this we define the function

I :¼ eZZX�1: ð62Þ

The matrix I has a jump on G

Iþ ¼ eZZ�DX�1 ¼ eZZ�X�1ðXDX�1Þ;

so that

Iþ ¼ I� eDD; eDD ¼ XDX�1 ð63Þ

and on ½�1; 1� we have

Iþ ¼ eZZ�jðX�jÞ�1 ¼ eZZ�j j�1X�1
� ¼ I�:

Thus the function I satisfies the following Riemann–Hilbert problem (note that
there is no jump on ½�1; 1�):

IAHðC\GÞ;
Iþ ¼ I� eDD on G;

IðzÞ ¼ I þ O 1
z

� �
as z-N

8><>: ð64Þ

and for the jump matrix eDD on G we haveeDD ¼ I þ OðqnÞ on G;
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since the entries of X and X�1 in (63) do not depend on n and for D the
asymptotics on G follows from the representation of j in (47) substituted in (55).
To finish the proof we apply to function (62) the following well-known lemma.

Lemma 1. Suppose that the jump matrix eDDn for the Riemann problem (64) is analytic

in the domain A containing the contour GfDnDnAHðAÞ; GCA; ð65Þ

and satisfieseDDn ¼ I þ en; ð66Þ

where en-0 uniformly on compact subsets of A as n-N: Then

I ¼ I þ OðenÞ: ð67Þ

A proof of the lemma, with a weaker condition on the jump than (65), can be
found in [3]. We note that for the case of scalar I; the proof of the lemma is rather
trivial by considering a problem for logðIÞ for which we can write a solution by
means of the Cauchy integral of logð eDDÞ: However, the function log of a matrix is not
properly defined so that another approach is required for proving the lemma in the
matrix case. This will be done in the next section.
Finally, substituting in (67) expressions (62), (58), (56), (55) and (52) we get the

desired asymptotic formulas.

The theorem is proved.

5.5. Proof of the lemma

Assuming the more restrictive condition (65) on the jump matrix in (64) rather
than the one stated in [3], we have an opportunity to give a more elementary proof of
Lemma 1 than the proof in [3].
Substituting (66) in the jump condition of (64), we have the following Riemann

problem for the matrix function

IAHðC\GÞ;
Iþ ¼ I� þ enI� on G;

IðNÞ ¼ I :

8><>:
Applying Cauchy’s integral formula (see (A.1) and (A.2)) for each entry of I; we
have

IðzÞ ¼ 1

2pi

Z
G
ðenI�ÞðxÞ

dx
x� z

þ I ; zAC\G: ð68Þ
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Then, because of (65), we can deform G to G0 which is lying inside the domain
A-OutðGÞ

IðzÞ ¼ 1

2pi

Z
G0
ðenI�ÞðxÞ

dx
x� z

þ I ; zAC\eAA; @ eAA ¼ G,G0 ð69Þ

and now the integral is not singular anymore for zAG; and both sides of (69) have a
limit when z-Gþ: Hence

I� eDD ¼ Iþ ¼
Z
G0
ðenI�ÞðxÞ

dx
x� z

þ I ; zAG: ð70Þ

Let z0AG be such that

jjI�ðz0Þjj ¼ max
G

jjI�ðzÞjj ¼: Mn;

then from (70) we have

MnpMn en constG;G0 þ 1
and therefore

Mnp
1

1� OðenÞ
and substituting this estimate in (68), we arrive at (67).

Appendix A. The Cauchy residue theorem on a Riemann surface and the solution of the

Riemann problem

A.1. Representation of piecewise analytic functions in C by Cauchy’s integral formula

Let us consider the piecewise analytic function f :

f ðzÞ :¼
f2ðzÞ; zAD;

f1ðzÞ; zAC\D;

�
where f1; f2 are holomorphic functions in the closed domains of their definition

f1AHðC\DÞ; f2AHðDÞ:

We assume that D is bounded, with piecewise smooth boundary @D which coincides
(as a set) with @ðC\DÞ: The Cauchy integral formula allows us to write f as

f ðzÞ ¼ 1

2pi

Z
@D
ðf2ðxÞ � f1ðxÞÞ

dx
x� z

þ f1ðNÞ:

Indeed, the integral on the right-hand side is

1

2pi

Z
@D

f2ðxÞ
dx

x� z
þ 1

2pi

Z
@ðC\DÞ

f1ðxÞ
dx

x� z
þ f1ðNÞ

¼
f2ðzÞ � f1ðNÞ þ f1ðNÞ; zAD;

0þ f1ðzÞ � f1ðNÞ þ f1ðNÞ; zAC\D:

�
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Here we use a version of the Cauchy theorem for a domain O (with NAO)

FAHð %OÞ ) 1

2pi

Z
@O

FðxÞ dx ¼ res
N

F ¼ �c�1; FðzÞ ¼ FðNÞ þ c�1
z

þ? :

Thus, if we introduce a jump function

jðxÞ :¼ f2ðxÞ � f1ðxÞ ¼: fþðxÞ � f�ðxÞ; xA@D ¼: G;

then the integral

f ðzÞ ¼ 1

2pi

Z
G

jðxÞ dx
x� z

þ C ðA:1Þ

gives a solution to the following boundary value problem (BVP) for the piecewise
analytic function f (with continuous boundary values fþ and f�):

Find f such that

ðaÞ fAHðC\GÞ;
ðbÞ ðfþ � f�ÞjG ¼ jAHðGÞ;
ðcÞ f ðNÞ ¼ C:

8><>: ðA:2Þ

This is a BVP which is usually called the non homogeneous Riemann problem or ‘jump’
problem.

Remark A.1. If jAHðdÞ; where d is such that GCd and if G0Cd; then for every
zAC\edd; with eddCd and @edd ¼ G

S
G0; the solution for (A.2) can be represented as

f ðzÞ ¼ 1

2pi

Z
G0

jðxÞ dx
x� z

þ C; zAC\edd: ðA:3Þ

Note that for zAedd; the right-hand side of (A.3) does not represent the solution of
(A.2).

For further insight it would be useful also to understand the Cauchy integral
formula as a corollary of the more general Cauchy residue theorem. Indeed, for

fAHðDÞ; with DCC; the formula

1

2pi

Z
@D

f ðxÞ
x� z

dx ¼ res
z

f ðxÞ
x� z

 !
¼ f ðzÞ

is a corollary of

1

2pi

Z
@D

f ðxÞwðxÞ dx ¼
X

j

f ðzjÞ res
zj

w ¼
X

j

res
zj

fw;

where wAM is a meromorphic function in D; i.e., wAHðD\fzjgÞ; with zjAD: The

expression hðxÞ dx is usually called a meromorphic differential in DCC: Thus the
Cauchy differential

1

x� z

� �
dx

is an example of a meromorphic differential in C:
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A.2. Riemann surfaces, meromorphic differentials and Cauchy’s theorem on a

Riemann surface

A mysterious fact: why is an integral around infinity, for a function holomorphic
at infinity, not equal to zero and why do we have to count the contribution of the
function at N despite of its holomorphicity there? This fact has an explanation in
terms of the Riemann surfaces and meromorphic differentials on them.
We start with an explanation of what a Riemann surface means. First of all it is a

surface, i.e., a two-dimensional topological manifold, which means that the surface
R is locally a result of a continuous deformation of the extended complex plane (or a
piece of the plane). Moreover, there is a correspondence between the points xAR on
the surface and the points tAC of the plane which is established by an open

continuous mapping t : R-C: The mapping tðxÞ is locally one to one everywhere
except for a discrete set of points, which are called branch points of R: All the other
points of R are called regular points. This mapping is called a projection of R:
Next, to become a Riemann surface, the surface R needs to have a complex

structure. To explain what this means, we recall the notion of a holomorphic function
on R: In a neighborhood of a regular point x0AR the projection tðxÞ is invertible,
therefore the mapping xðtÞ is defined in a neighborhood of the point tðx0ÞAC: A
function f is called holomorphic in a neighborhood of a regular point x0 on R if the
function f ðxðtÞÞ is holomorphic in the neighborhood of tðx0Þ on C: A function f is
called holomorphic in a neighborhood U of a branch point x0AR if f is continuous
in U and f is holomorphic in U\x0: A pair K ¼ ðU ; tðzÞÞ is called a holomorphic chart

of the surface R if

* U is a domain in R;
* tðzÞ is holomorphic in U and maps U to the plane disk u ¼ fjtjorgAC;
establishing a one to one correspondence.

In practice, Riemann surfaces are presented as a union of holomorphic charts
together with formulas of transformation from one local coordinate to another, and
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it is convenient to consider a function f ðzÞ on R locally as a function f ðzðtÞÞ on C

using the local variables tAu:

Example A. The extended complex plane R ¼ C is considered as a Riemann surface

with an atlas of the following holomorphic charts: K1 ¼ ðfjzjoRg; tðzÞ ¼
zÞ; K2 ¼ ðfjzj4rg; tðzÞ ¼ 1

zÞ; where RXr:

Example B. A two-sheeted Riemann surface (see Fig. 4 on the right) is a union of the
following holomorphic charts:

Ka ¼ Ua;
ðz� aÞ

1
2 ¼ t

z ¼ t2 þ a

( !
;

Kb ¼ Ub;
ðz� bÞ

1
2 ¼ t

z ¼ t2 þ b

( !
; ðA:4Þ

Kj ¼ ðUj : fa; b;NðþÞ;Nð�ÞgeUj; tðzÞ ¼ zÞ;y

K
NðþÞ ¼ fjzðþÞj4rg; zðtÞ ¼ 1

t

� �
; K

Nð�Þ ¼ fjzð�Þj4rg; zðtÞ ¼ 1
t

� �
:

Now a function f ðzÞ on R can be understood locally in the domain of the chart
ðU ; tðzÞÞ as a function of the local variable t and its holomorphicity (meromorphi-
city) in U means that the function f ðzðtÞÞ is holomorphic (meromorphic) in u ¼
fjtjorg:
In the same way, using a local variable, we define meromorphic differentials on R

as dOðzÞ :¼ oðzÞdz; where oðzÞ is a meromorphic function on R: For correctness of
this definition, i.e., to be independent from the choice of local coordinates, it is
necessary (and sufficient) to satisfy a condition of correspondence: dOiðziÞ ¼ dOjðzjÞ
in the intersection of Ui and Uj: A singularity of the differential dO ¼ odz in the
chart ðU ; tðzÞÞ is a point z0AU ; z0 ¼ zðt0Þ; where t0 is a singularity of the function
(in the variable t) wðzðtÞÞz0ðtÞ: The residue of the differential dO ¼ odz at the point
z0 ¼ zðt0Þ is

res
z0

dO ¼ c�1;

where c�1 is the coefficient of ðt� t0Þ�1 in the Laurent expansion wðzðtÞÞz0ðtÞ ¼P
N

j¼�N
cjðt� t0Þj: Note that, because of the holomorphic correspondence of the

charts, the position of the singularity z0 of dOðzÞ and its residue resz0 dO do not
depend on the choice of the chart covering z0:
Now we are able to state Cauchy’s theorem on a Riemann surface. Let fAHð %UÞ;

UCR (R is a compact Riemann surface) and dO be a meromorphic differential in
U : Then
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1

2pi

Z
@U

f ðzÞ dOðzÞ ¼
X

j

res
zj

½f dO�; ðA:5Þ

where fzjg are the singularities of dO in U :

A.3. The Riemann surface R ¼ C: Examples of meromorphic differentials on R ¼ C;
and normalization of the Riemann problem at an arbitrary point

Here we consider differentials on R ¼ C (see Example A from the previous
section).

Example A1. dOðzÞ ¼ dz:
In the chart K1 ¼ ðfjzjoRjg; zðtÞ ¼ tÞ we have z0ðtÞ ¼ 1; hence dz has no

singularities for jzjoR:

In the chart K2 ¼ ðfjzj4rg; zðtÞ ¼ 1
tÞ we have z0ðtÞ ¼ � 1

t2; hence dz has a pole of
second order at z ¼ N:

Thus, in accordance with (A.5), the integral for a function f ; which is holomorphic at
N;

f ðzÞ ¼ c0 þ
c�1
z

þ?

is given byZ
@ðjzj4rÞ

f ðzÞ dz ¼ res
z¼N

½f dz� ¼ res
t¼0

� 1
t2

� �
ðc0 þ c�1tþyÞ

 !
¼ �c�1:

This explains the usual convention concerning integration around infinity (see Section
2.1).

Example A2. Consider the meromorphic differential dOðzÞ ¼ dz
z�z

:

1. In K1 we have wðzðtÞÞz0ðtÞ ¼ 1
t�z

; hence z ¼ z is a pole with resz¼z dOðzÞ ¼ 1:
2. In K2 we have wðzðtÞÞz0ðtÞ ¼ � 1

tð1�tzÞ; hence

z ¼ z is a pole; resz¼z dOðzÞ ¼ 1;
z ¼ N is a pole; resz¼N dOðzÞ ¼ �1:

�
Thus, the meromorphic Cauchy differential on the Riemann surface C has two

poles z ¼ z and z ¼ N with

res dO ¼
þ1 at z;

�1 at N:

�
To indicate the singularities and their residues we will use the notation

dOðzÞ ¼ dOðz; z;NÞ ¼ dOðz; zðþ1Þ;Nð�1ÞÞ:

By means of the Cauchy differential we can construct the differential
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dOðz; zð1Þ;wð�1ÞÞ ¼
1

z� z
� 1

z� w

� �
dz ¼ z � w

ðz� wÞðz� zÞ dz:

Similar to the Cauchy differential in (A.1), this differential can be used for the

solution of the Riemann problem with normalization at any point wAC:

Find f ðzÞ such that
ðaÞ fAHðC\GÞ;
ðbÞ ðfþ � f�ÞjG ¼ jAHðGÞ;
ðcÞ f ðwÞ ¼ Cw;

8><>:
) f ðzÞ ¼ 1

2pi

Z
G

jðzÞ dOðz; z;wÞ þ Cw: ðA:6Þ

A.4. The Riemann problem on R: Examples of meromorphic differentials on the two-

sheeted Riemann surface

The last example of the Riemann problem on C (see (A.6)) can be extended to an
arbitrary compact Riemann surface R and oriented, piecewise smooth curve G on R
:

Find f ðzÞ such that
ðaÞ fAHðR\GÞ;
ðbÞ ðfþ � f�ÞjG ¼ jAHðGÞ;
ðcÞ f ðwÞ ¼ Cw; wAR\G:

8><>: ðA:7Þ

Here fþ and f� are the uniformly bounded limit values of f on G from the ‘‘positive’’
and ‘‘negative’’ side with respect to the orientation of G: By analogy with (A.6),
from Cauchy’s theorem on R it follows: if jðzÞ dOðz; z;wÞ has no singularities on G;
then

f ðzÞ ¼ 1

2pi

Z
G

jðzÞ dOðz; z;wÞ þ Cw: ðA:8Þ

Note the uniqueness of the solution of (A.7): If R is compact, then the solution of the
Riemann problem (A.7) is unique.

Let f and eff be the solutions of (A.7), then for ðf � eff Þ we have j ¼ 0; therefore
ðf � eff ÞAHðRÞ and if R is compact, then, by the maximum principle, ðf � eff Þ is
constant. Moreover, by (c) we see that this constant is zero.
Now we present some important meromorphic differentials on the two-sheeted

Riemann surface (see Example B , Fig. 4, we put a ¼ �1; b ¼ 1).

Example B1. We will use the notation zðþÞ and zð�Þ for the points belonging to the

‘‘opposite’’ sheets, but having the same projection zAC:
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We have

dOðzÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p 1

z� z
dz ¼ dOðz; z

ðþÞ
ð1Þ ; z

ð�Þ
ð�1ÞÞ: ðA:9Þ

is a meromorphic differential onR with singularities described by the right-hand side
of (A.9).

Proof. It is evident that z ¼ zðþÞ and z ¼ zð�Þ are the poles of dO with residue þ1 and
�1; respectively. Next,

Kþ1 :

ffiffiffiffiffiffiffiffiffiffiffi
z� 1

p
¼ t

z ¼ t2 þ 1

(

)wðzðtÞÞz0ðtÞ ¼ 2t
ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p

t
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ 2

p
ðt2 þ 1� zÞ

) no singularity at z ¼ 1:

The same at z ¼ �1 . There is no singularity at z ¼ N
ð7Þ : because of

K
Nð7Þ : z ¼ 1

t
; wðzðtÞÞz0ðtÞ ¼ t2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

pffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p
ð1� tzÞ

� 1
t2

� �
:

Example B2.

dOðzÞ :¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p

ðz� zÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p dz ¼ dOðz; zð1Þ;NðþÞ
ð�1
2
Þ
;N

ð�Þ
ð�1
2
Þ
Þ: ðA:10Þ

Proof. There is a singularity at z; with resz dO ¼ 1; but there is no singularity at ezz:
There are no singularities at z ¼ 71: Indeed (take þ1 for example)

Kþ1 ) wðzðtÞÞz0ðtÞ ¼ t
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ 2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p

2ðt2 þ 1� zÞt
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ 2

p 2t:

At Nð7Þ we have

wðzðtÞÞz0ðtÞ ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p
þ t

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p

ð1� tzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p t � 1
t2

� �
;

therefore

res
Nð7Þ

dO ¼ �1
2
:
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From (A.10) we obtain the expression for

dOðz; zð1Þ;wð�1ÞÞ ¼ dO z; zð1Þ;N
ðþÞ
ð�1
2
Þ
;N

ð�Þ
ð�1
2
Þ

� �
� dO z;wð1Þ;N

ðþÞ
ð�1
2
Þ
;N

ð�Þ
ð�1
2
Þ

� �
:

Example B3. (Green’s differential).

dGðzÞ :¼ dzffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p ¼ dO z;NðþÞ
ð�1Þ;N

ð�Þ
ðþ1Þ

� 	
: ðA:11Þ

Proof.

Kþ1 : z ¼ t2 þ 1) wðzðtÞÞz0ðtÞ ¼ 2t

t
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ 2

p :

KNþ : z ¼ 1
t
) wðzðtÞÞz0ðtÞ ¼ tffiffiffiffiffiffiffiffiffiffiffiffiffi

1� t2
p � 1

t2

� �
) res

Nþ
dG ¼ �1:

From (A.10) and Green’s differential (A.11) we obtain the expression for the
differential

dOðz; zð1Þ;N
ð�Þ
ð�1ÞÞ ¼ dO z; zð1Þ;N

ðþÞ
ð�1
2
Þ
;N

ð�Þ
ð�1
2
Þ

� �
� 1
2

dG: ðA:12Þ
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