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Abstract

We describe methods for the derivation of strong asymptotics for the denominator
polynomials and the remainder of Padé approximants for a Markov function with a complex
and varying weight. Two approaches, both based on a Riemann-Hilbert problem, are
presented. The first method uses a scalar Riemann—Hilbert boundary value problem on a two-
sheeted Riemann surface, the second approach uses a matrix Riemann—Hilbert problem. The
result for a varying weight is not with the most general conditions possible, but the loss of
generality is compensated by an easier and transparent proof.
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1. Introduction

Recently, there has been considerable progress in proving strong asymptotics for
general orthogonal polynomials using methods of complex analysis and a Riemann—
Hilbert boundary value problem (BVP) for matrix analytic functions. This new
approach has been used extensively by P. Deift and his collaborators and an
important reference is [3]. The matrix Riemann—Hilbert problem for orthogonal
polynomials was first formulated by Fokas, Its and Kitaev [8], and analyzed by
Bleher and Its [2], Deift et al. [4-6], and Kriecherbauer and McLaughlin [10]. We
recommend the exposition of Kuijlaars [11] for an introduction to the use of the
Riemann—Hilbert approach for the asymptotic analysis of orthogonal polynomials.
In the present paper we explain special versions of BVP based approaches. The roots
of these versions lie in the research of rational approximants. The first presentation
of a version based on BVP on a Riemann surface was in the paper [13] of Nuttall,
although the ideas were in [14] and even in earlier papers of Nuttall (related
references can be found in [14], see also the paper of Stahl [16]). A substantial
development of the approach based on the BVP on a Riemann surface has been done
by Suetin in a recent paper [17], where Nuttall’s version of the asymptotic analysis
has been extended to Padé approximants for hyperelliptic functions. Also we would
like to add to the list of references an older paper [1] where the main ingredient, i.e., a
boundary value Riemann problem on a Riemann surface, has been considered in
connection with strong asymptotics of orthogonal polynomials.

The present paper is intended to describe the Riemann—Hilbert boundary value
problem and its relation to strong asymptotics of Padé approximants in a rather
general setting. In the appendix we give an introduction to the Riemann boundary
value problem. So a reader not familiar with the Riemann boundary value problem
is encouraged to start reading the paper from the end. The aim of this appendix is to
provide a ‘shortcut’ in complex analysis to give an idea of how to find a solution of a
boundary value problem on a Riemann surface, based just on the notion of Cauchy’s
integral formula and its generalization, the Cauchy residue theorem. The Riemann
surfaces, which will be used in this paper, have genus zero, which allows us to avoid
the non-trivial part of the theory of Riemann surfaces and requires from the reader
just a ‘naive’ understanding of a Riemann surface as a two-dimensional manifold in
four-dimensional space.

In Section 2 we solve a special Riemann problem, which will be used for the
derivation of the strong asymptotics. Then in Section 3, we prove strong asymptotics
of Padé approximants for a Markov function generated by an analytic, complex
valued weight function, i.e., strong asymptotics for polynomials orthogonal with
respect to an analytic complex valued weight. This result is just a repetition of the
corresponding theorem of Nuttall from [13], using for its proof ideas and details
from Suetin’s paper [17]. Nevertheless, there are some new methodological insights
which make the proof easier and which indicate that the method can be developed
for a wider class of applications. Next in Section 4 we prove a generalization of
Nuttall’s theorem when the complex valued weight has a varying real valued
component. An equilibrium problem in the presence of an external field plays an
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important role here. Finally (see Section 5), we consider Deift’s (with co-authors)
version of the Riemann—Hilbert problem approach to the strong asymptotics for
orthogonal polynomials (see [3]). The starting point of the approach is a
reformulation of the orthogonality relations in terms of a matrix Riemann—Hilbert
problem which has been introduced and developed in [7,2]. We choose for this
presentation of the approach a model problem of asymptotics for polynomials
orthogonal on [—1, 1] with respect to a complex weight function—the same problem
as in Section 3. Here (again as in Section 3) we assume that the analytic weight
function has the same behavior at the end points of the interval of orthogonality as
the classical Chebyshev weight. This allows us to get a very easy proof (in the
framework of Deift’s approach) for the asymptotic formulas. This shortcut avoids
most of one delightful ingredient of the matrix Riemann—Hilbert problem approach,
which is the analysis around the end points.

Concluding the introduction we have to say that the paper has more emphasis on
explaining a method than on exposition of new results. We pay more attention to
showing the different points of view on the same subject and to transparency of the
proofs than to generality of the results proven here.

2. Auxiliary BVP

In this section, we start from the preliminary material presented in the appendix
(see below) to study a function which will be used in the formulation of the
asymptotic formulas later on. This function is introduced as a solution of some
boundary value problem. The function contains a generalisation of the well known
Szego function for the complex weight.

2.1. Statement of the problem, properties of the solution

Let ¢(z) be a complex valued function, ¢(x)#0 for xe[—1, 1], and assume that g
has an analytic continuation in the domain d o [—1, 1], so that ge H(4). We consider
the following BVP:

Y2, = 0@E™"),
o

Lvper@-L {10

Find ¢,y such that 5 {Qq)+ =y_
C oo =y,
3. ¥, =1

on [—1,1],

The boundary values ¢, and ¥, of ¢ and  are assumed to be uniformly
bounded on [—1, 1].
We highlight several properties of the solutions of problem (1):
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Property 1. For every zeC we have

Y(2)o(z) = 1. (2)

Proof. From 2 in (1) it follows that (py), = (py)_ on [-1,1], so that 1 in (1)

implies that ¢y is analytic in C. The maximum principle (or Liouville’s theorem)
then shows that ¢y is constant, and by 3 of (1) we see that the constant is 1. [

From Property 1 we also have

ep,¢_=1 on [-1,1]. (3)

Property 2. We have
Y, 0#0 in C. (4)

Proof. This is an immediate consequence of 1 in (1) and Property 1. [

Let us consider a piecewise analytic function F on the two-sheeted Riemann
surface R (see Appendix, Fig. 4) consisting of two analytic pieces ¢ and  placed on

the sheets R and R, respectively:

o(z), zeR™M),
Fla= {lp(z), zeR). ®)

Let 4 be a contour on the Riemann surface splitting R into two pieces {R™\[—1, 1]}
and {R(7\[=1,1]}. For 4 we can choose a Jordan contour which goes along the
upper side of [~1, 1] on {R)} and along the lower side of [—1, 1] on {R")} in the
clockwise direction. Then the BVP (1) for the functions ¢ and y is equivalent to the
BVP on R for F given by (5)

. FeH(R\{4, ©*}), FH ()],
Find F such that< 2. oF, = F_ on 4, (6)
3. FHFS) =1

Properties 1 and 2 for (¢, ) transform into (see (2) and (3))
F(EMFE) =1 vzeC,
and

F#0 on R.

Finally, we mention the uniqueness property of the solution of (1) and (6).
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Property 3. If the solution of the BVP (6) exists, then it is unique.

Proof. Let F and F be two solutions of (6). Then 2 of (6) shows that (J%) = (f)
+ —

on A4, and hence % is holomorphic on the whole Riemann surface R, and by the

maximum principle on R we have that % = const, and by 3 of (6) we conclude that

F
Z-1. 0O
]:

Now we construct a solution of the BVP (6). First we proceed with a special case
and after that we consider the general case.

2.2. Special case. Representation of the mapping function and Szego function for a
Bernstein weight by rational functions on R

Let the multiplicative jump in the BVP (6) be given by
1

Q==

p

7

where p is an arbitrary polynomial of degree m with complex coefficients.

Polynomials orthogonal on [—1, 1] with respect to the weight 1/(p(x)V1 — x?) have
been considered by S.N. Bernstein, see, e.g., [18, Section 2.6].

Let B(z) be a function meromorphic on R, which is (like a rational function on C)
defined by its zeros and poles (divisors) as follows (see Fig. 1):
e On R™) at oo™ there isa pole of order n,
B:{ e On R we have the m zeros of p(z) = ¢,z + -+
and at oo~ there is a pole of order m — n.

The normalization of B is chosen as

B (Z)B<_) (z)

lim ——22
Z—> 0 zm
(00)"
(+) .
|
|
m |
— I(Oo)m_"
=) T
|
-1 +1 o0

Fig. 1. Zeros and poles for the function B.
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It is easy to check that the function

;o B on R,

0B on R,

satisfies the BVP (6) for ¢ = 1/p. Indeed, condition 1 of (6) is valid by construction
of B. Condition 2 becomes

oB, =9B_ on 4
and it is valid since B is an analytic continuation of B™). Condition 3 is valid
because of the normalization of B at co.

The function B can be decomposed into the product of two rational functions on
R

B = Fpd",
where the zeros of Fg are on the sheet R(™) at the zeros of p and Fjp has a pole of
order m at oo (-) (Fig. 2).
The function @ has just a simple pole at oo(*) and a simple zero at oo(~) (Fig. 3)

The normalization is @) @(7)| = 1. For the function @ we know the explicit
expression

D(z)=z4+V2 -1, | =224, (7)

This is the inverse Zhukovsky function: @(z) maps the following regions to the inside
and outside of the unit circle:

o) {C\[-1,1]} > {|w|<1} =: U,

oM {C\[-1,1]} = {|w|>1} = C\U.

2.3. General case. Determination of the Szego function for a complex valued weight by
means of the solution of the Riemann problem on R

First we normalize the solution of the BVP (6) on R:

F = § on R.
(+) .
I
I
m |
— 1 (o0)™
(=) © T
I
-1 +1 o0

Fig. 2. Zeros and poles for the function Fp.
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(o)
) .
l
|

) ' ©

-1 +1 | 00

Fig. 3. Zeros and poles for the function .

For the bounded function F on R (taking into account the properties of F and &) we
have

l. FEH(R\4); F#0 on R,
2. 9F, =F_ on AcR,
3. FFE) =1 on C.
Observe the following equality, which follows from 2 and 3 of the above relation:
oF"F) =1 on [~1,1]<C. 8)
Since F does not vanish on R and ¢#0 on 4, we can choose a single-valued branch

of the complex logarithm, connecting the functions In ), In F) and Ing on 4.
Thus, for the single-valued function In F on R, we have the standard Riemann
problem (see Appendix (A.7)) on R:

1. In Fe H(R\4),
2. (InF), —(InF)_ = —Ing on 4,
3. InF(z9) = —In F(z7)),
which can be solved using the Cauchy integral (A.8)

In F(z%)) = —2% / Ino(0) dQ((; 2, 20) + In F(z)).
T J4

Finally, substituting the explicit expression for the meromorphic differential (A.9),
we have

In P = — o [ e d,20)

V2 —
| =m0
ani J4 /P —10—2
Let us denote by w(z) a branch of vz — 1 on C\[—1, 1] such that
I
w(x) = (x> = 1)2>0 for xe (1, 0]. 9)
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Then we have

lnF(H(Z):% ’ ﬁz_chw(()d@
1 ! w(z) Ino(x) 1 ! w(z) Ino(x)
47i wx), z—x dx Ani /,1 w(x)_ z—x dx
1 P w(z) Ino(x)
2ni Joy w(x), z—x dx.

The function
Ing(x) dx
() — -
FH(z) = exp{ V22 / e _l_xz} (10)

is the reciprocal of the so-called Szegd function, which satisfies the boundary
condition (8) and is normalized at infinity as

1 Un o(x) dx

Thus we obtained
0(2) = ' ()F(2), 0()], =F(0)(22)" + -, (11)
where @ and F are given by (7) and (10).

3. Strong asymptotics for Padé approximants of a Markov function with complex
weight

3.1. Jump condition for Pade approximants

We consider a Markov function

1

and its Pade approximants: a polynomial denominator Q, a polynomial numerator P,
and the remainder function R such that

1
n = 0(5). (13)
2. 0o+P=R

We assume that g satisfies the conditions of Section 2. Also, for the moment, we will
assume that the complex-valued function g is such that deg Q = n. Later on we will
show that this is always the case for large enough n. This was already proved by
Magnus [12], who also proved the convergence of the Padé approximants using
Toeplitz matrix techniques. We take the normalization of Q as

0() =2+ -+

1. deg Q, degP<n, R
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From the definition of a Markov function (12), we have by the Sokhotsky—Plemelj
(or Stieltjes—Perron) formula

0
0. —0_ =— -1,1
20 =,- on[-L1]
which gives us the jump condition for the remainder function (this follows from
definition (13))

R+—R,:QW£+ on [-1,1]. (14)

3.2. Riemann problem on R for Pade approximants and its solution

We have from (14) and (9)
(WR), — Qo = —(wR)_ on [-1,1]. (15)

The idea of what follows is: using the decomposition of ¢ by means of the auxiliary
BVP considered in Section 2, we rewrite the above jump condition as a jump for

functions analytic in C\[—1, 1], for which the Riemann problem on R can be stated
and solved, giving as a result an integral equation for the remainder function R. The
analysis of this integral equation leads to the asymptotics for Q and R. So, (15) and
(1) give us on [—1, 1]
Yo
0=—= (WRQD)+ - (le)_ = _(P-o-(WR)_
Py
and
_Yy _
0=, (WRp)_ — (OQY), = —¢p_(WR),.

Thus, for the functions
(WRQD), (le) GH(E\[_L l])7

we have the following jump condition:

(WRg), — (O%)= = (‘“f)

F

We define on R
w(z)R(2)p(z), zeR™),
flz) = (z)R(z)o(z) O
0(2)¥(2), zeR".
Then for f we have the following Riemann problem (see (A.7)) on R:
l. feH(R\A),
2 fr—f-=j- onA:={[-11 u[-1,1]_}cRY), (16)
3. f(0)) = ¢y,
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where

j= —(lPWR> on R nn1(9)

Q

and

FO(0) 1 1 /1 In o(x) dx
Gy =———==—¢exXps — — .
on 2n 2n J_1 V1= X2
The solution of this problem (see (A.8)) is
1 . _
1) =5 [ 50 d@(cz )+, (17)

A4

where the explicit expression for the differential dQ is given in (A.12). If we consider

(17) for ze R™), we get an integral equation for R.

Now an important point! Taking into account that the jump function j({) has an
analytic continuation from 4 to the RO) sheet, we can deform the contour 4 to the
contour A’ = {z: |®(z)* =1 —¢£,6>0} =R ~n~1(8), and for z outside a ring A,
bounded by 4 and A’, we have (see Remark A.l in Appendix, Section A.1)

1

16 =5 [ SO0z =)+ zeRIA (18)
2ﬂ:l A
3.3. Outer asymptotics for Q

First we estimate [|R||¢(). We denote M, = [[wR¢|| (4. Consider Eq. (18) for
ze R4

(WRo)(z) =

1 wy R
2mi A Y
Note that the integral here is not singular anymore, therefore wR¢ has a continuous

limit on 4 and (19) is valid also for ze 4. Thus, (19) implies

My =R el = |y [ o0 )€ dim, =)

for some zyeA. Taking into account the expression for % (see (7) and (11)) and the
fact that dQ has no singularities in R(\(4u{c0(7}), we find
&
1—-C(1—¢)"

)(C) dQ((iz, 0)) + ¢y (19)

M, <M,C(1 —¢)" + ¢, = M, < (20)
Now we can get the asymptotics of Q on compact sets K = C\[—1, 1]. Fix K and choose
¢ such that K = C\A. Considering (18) for ze RC)\ A, we have

(OW)E) — e = oR)©) (L) € deciz, )

4

2ni f 4
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Therefore,
1O = eull ey S CM(1 — 8)”<0nm(1 -
Dividing by ¢,, we obtain the desired asymptotics:
z
OE 1 4 owgg). ge=t.
n

or
0(2) = an(2)(1 + O(dk))-

3.4. Asymptotics on [—1,1]: statement of the theorem

As we already mentioned, the integral equation (19) remains valid for ze 4. Thus

o v o
11@es = 557 [ 0RO (L)@ 0tz o) 4
Therefore, for ze 4
1) -l =g [ R0 (L) etz o)
" c(1-¢)"
< M,C(l1 —¢)"<e, —ci-a"

So, we have obtained uniform asymptotics for the remainder R(z) on the interval
[_17 l]

S+ (x)

Cn

(wRp) , (x)

Cn

=1+ 0(q"),

xe4 xe[-1,1]

where 0<g<1 and ¢ depends on the size of the domain of analyticity of ¢(z),
(i.e., on 9).
Now, for the polynomials Q we have from the boundary value Padé problem (15)

0= (WTOR>++<%> on [—1,1]

and because of

(WR), e iy Cn
Y f(PiQ(lJrO(q ) =V,

we finally obtain (taking into account the boundedness of ¢ on [—1,1])

(1+0(q") = cnp (1 + O(¢")),

0 n
= ¢+ T 9_+0(¢") on[-L1]

Now we can make the following remark about the normality of Padé
approximants. We can omit our assumption for ¢ that deg Q =n, for n large
enough. Indeed, if deg Q<n, then everything above remains valid apart from
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condition 3 in the Riemann problem (16), which becomes
3 Flo )y =¢,=0,

but this leads to a contradiction with (20) for large n.
Thus we have proved the following theorem:

Theorem 1. Let ¢ be a non-vanishing complex valued function on [—1, 1], which is
analytic in some 6 neighborhood of [—1,1]. Then for the Markov function

L) de
Q(Z)'_zn/lz_gm

and sufficiently large n, there exists a unique polynomial Q, with Q(z) = z" + -+, such

that
1
o0 0<Zn+]> !

The polynomial Q and the remainder function R have the following asymptotic
Sformulas:

Qo+P=R, degP=n-1, R(2)

1) CnQ<P(2) =1+ O(Q;’gg), zeKc=C\[-1,1],
Q‘SC) = ¢+(x) +o-(x) +0(g,), xe[-11],
2) Ri(x) 1 oW, st

o (VP Te(x),

where

</)(Z)=(z+\/ﬁ)”exp{ lm/l Ino(x) dx }

2 -1 27X V=2

and

" 1 [ Ing(x)
== — dx ;.
o) ools [
The constants qx ,, q, are such that 0<qg,, q,<1 and depend on the compact set K
and on the size of the domain of analyticity of ¢ (i.e., on o).
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4. Strong asymptotics for polynomials with respect to a varying weight

4.1. Conditions on the varying weight. Equilibrium in external field. Statement of the
problem

Here we assume the weight generating a Markov function in (12) has a dependence
on n of the form
p,=e Mp  peH(), p#0on[—1,1]cd

and for g, we assume
1 &
lan=dlicw = 0(3). @eH@), Sq=0on 1,1
These settings for p, can be rewritten as
py=¢""pn, p,eH(S), p,#0in 5
and
1An = pllce) = OD).

We note that for further consideration it is enough to assume that {j,} is a compact
family in H(9).

Next we have to put extra conditions on ¢g. For this we consider the equilibrium
problem in the presence of the external field ¢ for the logarithmic potential

1
V) == [ nfx =zl du)

of positive probability measures e M " ([— o0, ]), supported on [—1, 1]. It is well-
known (see [9,15]) that there exists a unique measure A (called equilibrium measure in
external field) such that

Y on supp 4,
v, — 21
1te {23) on [—1,1]. 2l
In what follows we assume
g is such that supp A = [—1,1]. (22)

Remark. A sufficient condition for (22) is convexity of ¢ on [—1,1]. It is not so
difficult to see (see, for example [9]), that (22) and ge H(J) imply absolute continuity
of / and

FeA\{-1}u{+1})),

i.e., A’ has analytic continuation in the punctured (at +1) domain J. In what follows
we assume more, namely that

m(z)
V21

g is such that /'(z) = meH(5), m(+1)%0. (23)
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Remark. If the equilibrium measure for the problem on M (1), for some I :
[—1,1]=T <o has its support equal to I, then condition (23) is fullfiled. A proof of
these remarks can be found in [9]. We also mention that if ¢ is a convex analytic
function on 6 N R, then both our extra conditions (22) and (23) hold true (this follows
from the previous two remarks).

Now we state a problem about polynomials orthogonal with respect to the varying
weight. These polynomials have a variety of very important applications(see, e.g.,
[19]). Suppose the family of Markov functions

oLt p(x)dx
Pnl2) = 2n ,/71 (z—=x)V1—x?

is generated by the family of weight functions of the form
p,=ep,  p,eH(), p,#0in s, T[g=0on [-1,1],

where ¢ is such that the equilibrium measure A4 of problem (21) satisfies conditions
(22), (23) and {p,} is a compact family in H(6). For each n we consider Padé
approximants of index n to the function g,

) 1
On(z) =2"+ -, an;1+P;1:Rn:O(ﬁ>'

The polynomial denominators Q, satisfy the following orthogonality relations:

|
/Q,,(x)pn(x)x“a’x:07 v=0,...,n— L.
-1

The investigation of the strong asymptotics for these polynomials Q, and for the
remainder function R, goes along the same lines as we did in the previous chapter for
non-varying weight. Only two new ingredients will be introduced. In the next section,
using the equilibrium problem (21) we present another expression for the solution of
the auxiliary BVP (1) for a varying weight. Then in Section 4.3 we do a more delicate
analytic continuation of the jump function for the remainder function’s Riemann

problem (16) on the second sheet R(™) of the Riemann surface.
4.2. Another representation for the solution of the auxiliary BV P for varying weight p,

Here we consider the solution of BVP problem (1) for the varying weight p,. As we
know (see (11) and (10)) the solution is

o(2) :@”(z)exp{ n /_l w(z) 2¢(x) dx + 1 U w(z) Inp,(x) dx},

2ri J_y wi(x)z—x 2mi ) we(x) z—x
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We denote by G = In @ the complex Green function, H is the first integral in the
exponential above and F"») stands for the last multiplier of ¢:

¢ =: exp{n(G — H)}F) (24)

We will also use the notation

Fo) = e @ —exp{n(G—H)} and ¢y =—.

o)
From (3) and (8) it follows that on [—1, 1]
AP~ 1
FPple)e2 = 1. (25)

The last relation gives us
H +H_+2¢=0 on[-1,1],
which, taking into account the symmetry with respect to R leads to
RH+¢g=0 on [-1,1].
Thus the harmonic function
h=RH inC
gives a solution of the Dirichlet problem
L {he Harm(C\[-1, 1])
h=—q on [—1,1].
Now we turn to the equilibrium problem (21)
Vi(x) +q(x) =y, xe[-1L1].
Using a Green function g(z) of the domain C\[—1, 1]:
geHarm(C\[-1, 1]),
g:< g=Inlz|+ C+ -+ near z= o0,
g=0 on [-1,1],
and the solution of the Dirichlet problem (26), we rewrite the equilibrium relation as
Vi(x)—y=h(x)—g(x), xe[-1,1].

In fact the above relation holds not only on [—1, 1], but on the whole C. Indeed, the
difference between the right and the left-hand sides of the relation is a harmonic
function on C\[—1, 1] (the singularities at co are canceled) and its boundary values
on [—1,1] are equal to zero, therefore by the maximum principle for harmonic
functions, we have that the difference is zero on C. Thus

Vilz2) =y =h(z) —g(z), zeC (27)
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and adding complex conjugate functions to (27), we obtain an identity
Vi(z) =y = H(z) = 6(2),

where V), stands for the complex potential of the measure 4.
Thus, substituting the obtained identity in (24), we have a new representation for
the solution of BVP problem (1) for p = p,
¢ = ¢<4)F(ﬁ:z) — exp{n(w/ — V;L)}F(l;n)’
1 (28)
b=—
%

4.3. Integral equation for the remainder function for the case of a varying weight

As in the case of a non-varying weight we can use the function satisfying the
auxiliary BVP (1) with p,, to arrive at the integral equation (see (17))

1 YwR
’ _ n O(&: (=) A
Sfu(2) i A( o )(i)d (&z, 07+ Cyy zeR,
where
wR,p on R™),
o= ¢ O (29)
oy on R

and as contour 4 we choose a cut along the upper and lower sides of the interval

[—1,1] =R with negative orientation with respect to the R~ direction.
As before we would like to deform the contour 4 to the inside of the second sheet

R") using analytic continuation of the jump function. The aim of this section to
show that, under our conditions on the varying weight, the analytic continuation of

the jump ('P‘[}‘—R) on the contour A’CRH\[—L 1] decreases exponentially when
n— oo. We consider the analytic continuation of
R R 2 _
YR, _ (W—") (W_) from [-1,1], to C
Pn ¥ ) \py -

and will pay special attention to the continuation of the second factor. Taking into
account the multiplicative dependence of the solution of BVP (10) on weight
functions, and using the notation of the previous subsection, we have

YR (FOD) ()

Y = = on [—1,1],.
We consider the continuation of the second factor. We have (see (25))
@)? (@) (@) (@)
9 (4 q
(‘pi> L < S /N B S SR
e—2nq (2) P (9) ’

o' oW e=2ma e
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and applying the new representation for the solution of BVP (28) for a varying
weight, we find

)

e—2nq

=exp{-n(V;z —V,+)} on [-1,1]
and because of the symmetry with respect to R, we have

)

T exp{2ni 3V,4+}, on [—1,1].

Now we shall prove that under condition (23) a function

=130, on —1,1], (30)
- +

has a holomorphic continuation to {6\[—1, 1]} and for some &=

3/(z)>0, zed\[-1,1]. (31)
We do this in three steps.

1. First we present an expression for the function /(x), xe[—1, 1]. We have

Vi(d)=— /1 In(z — )X (1) dt = /1 In|z — ]2/ (¢) dt

B 1 -1

—i /1 arg(z — 1) (1) dt.

1

Fixing a branch arg(¢) = 0, £ >0 we analytically continue the above formula from
some point z€[l, o] to some point xe[—1, 1] along some path belonging to the
upper half plane and along some path from the lower half plane. As a result we
will have

I
V+(x):V(x)-T-in/ A(t)ydt, xe[-1,1].

Thus

1
(i(x)=F / 2 (1) dt.

2. Then we see that the function

1
(== [ 1o (32)

gives a holomorphic continuation of 7 (x) in the upper and lower neighborhood
of [—1, 1]. We denote these lense-shaped simply connected domains as 5. and o_.



146 A.L Aptekarev, W. Van Assche | Journal of Approximation Theory 129 (2004) 129-166

There the function /(z) is a primitive of the holomorphic branch of the analytic
function A'(z)

1
/4 (2) ::—/ N(E)dE, zedy.

Using a local representation of /(z) in the neighborhoods O, and O_; of the end
points of [—1, 1] (which follows from (32) and (23))

/() = miy(z)V1 =z, my€H(O04), Jmyp=0on RNO4, ze04y,
Wl_l(Z)\/Z—l, WL]GH(O_]), Sm_1 =0 on Rﬂo_l, Z€0_1.

(33)

we see that analytic continuation 7, (z) from 5. to some point xeR such that

xe((Q+1VO0_)\[-1,1))"R) coincides with the analytic continuation of /_(z)

from J_ to the same point x. Thus the function (32) is holomorphic in a
neighborhood of [—1, 1]

(eHO\[-1,1]), §=0,00_U04ULO_,

and satisfies the boundary condition (30) on [—1, 1].

3. It remains to check (31). In the domains . and 6_ inequality (31) is true because
of the Cauchy—Riemann equations

03¢/  ON/

—=——=)(x)>0.

oy " ox W
To check (31) in the domain (O4; U O_;)\[-1, 1], we use the local representation
(33) of /(z) there. Take for example O, we can choose O, small enough such
that the argument of m; (which is zero on Rn O, ) does not make a substantial
contribution to the argument of /(z), so

arg/_(x) =0<arg/(z)<m=arg/ (x), zeO;\[-1,1], xe[-1,+1].
Thus

3/>01in (0O LV O_)\4
and we have (31) for / given by (32).

Summarizing our transformations of the jump function in (29), we have

R R F(ﬁu) -2 .
j:Wlﬁ n:Ww”J’ J::gesz on A:[_171}+CR
P Pn i

So now we can lift the domain & on the sheet R, we denote it by

D RO, n(f)(*)) =45
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and using analytic continuation of j to D) it is possible to deform contour A in (29)
to some contour A'<D(-):

fulz) = _% y (‘Vlf"(«:).i(g) dQ(¢; z, oo<—>)> 1C, zeRA, (34)

where AcR(7) is a ring domain bounded by AU A’
Finally, taking into account compactness of g, in H(o ) and (31) we have

(Ml <Cr", k<, (35)

where the constants C and x depend on analytic properties of the varying weight p,,.
4.4. Statement of the theorem (for varying weight)

Thus using estimation (35) in the integral equation (34) and repeating all
arguments we used to prove the corresponding theorem for the non-varying weight,
we arrive at the following theorem

Theorem 2. Let {p,} be a family of holomorphic functions in the domain 6>[—1,1]
py=¢"pn, p,eH(S), p,#0in 61,1,

where {p,} is a compact family in H(), and q is real valued on [—1, 1],
Jg=0 on[-1,1].

Furthermore, p,, is such that the equilibrium measure 1 in the external field q

y on supp 4,
V,+q=
1 {>y on [—1,1]
is absolutely continuous on supp /. = [—1, 1] and its derivative has the form
m(x)
M(x)=—2, meH(5), m(+1)#0.
() = (6), m(+1)
Then for sufficiently large n, there exists a unique polynomial
Qn(z) =2+ )

which is orthogonal with respect to the weight function p,
/ On(x Vp" x) dx =0, v=0,....,.n—1
V1—x2
and for the polynomials Q, and the functions of the second kind

Ry [ Q) ) d

1 2= XV —x2
the following asymptotics formulas hold:
On(z)

0 (2) 14+ 0(x%), zeKcC\[-1,1],
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an(x) — 0. () + o (x)+ O(), xe[-1,1]
R4 (x) 1

@ (Tt oM el

where the constants k€(0,1), ¢, and ¢, are

o(z) = V) exp{—\/zz—/ _Inpulx)dv }

(z—=x)V1—x?
1 ~
—nmy lnpn(x) }
cp=e"ex ———Cdx p,
! p{ 1 V1= X2

and

y=In2+— dx.

/m

5. A matrix Riemann—Hilbert problem approach

We start here with the matrix Riemann—Hilbert problem formulation of the
orthogonality relations. Then we recall the auxiliary boundary value problem, which
we studied in Section 2 and which will be used here for the normalization of the
matrix Riemann—Hilbert problem. Next, according to Deift [3], we proceed with the
transformation of the original matrix Riemann—Hilbert problem to a problem with a
jump matrix function which tends to the identity matrix as n (the degree of the
polynomials) tends to infinity. Finally, to make the presentation self contained, we
give a proof of the lemma stating that, if the jump matrix for the matrix valued
homogeneous Riemann—Hilbert problem tends to the identity matrix, then the
solution also tends to the identity matrix. At this point, we again take a shortcut by
assuming that the jump matrix is analytic, it is possible for us to give a trivial proof,
just based on the Cauchy theorem, without applying the harmonic analysis which
was used in its original version in [3].

5.1. Orthogonal polynomials and a matrix Riemann—Hilbert problem

Let
0n(x) = "+ -

be a monic orthogonal polynomial

1
/ 0,(X)x*h(x)dx =0, k=0,....n—1, (36)
-1
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with respect to a weight function 4, which we assume to have the form

(x)
h(x) = \/f_—xz xe[-1,1], (37)

where ¢ is a complex valued function, non-vanishing on [—1,1], which is
holomorphic in some domain ¢ containing the interval [—1, 1]:

0#0 on [-1,1], 0eH(d), [-1,1]<d. (38)

Let R, be the function of the second kind associated with Q,,:
1 U 0,(x)h(x) dx —
Rn(Z) = 2_7'[1 [1 T, RnGH(C\[—l, 1]) (39)

It is easy to verify that the orthogonality relations for Q, are equivalent to the fact
that

Ry(z) = o(ﬂL), Z> 0. (40)

As before (see Section 3), our starting point is the Sokhotsky—Plemelj formula for
the boundary values of a Cauchy type integral, which we apply to the function of the
second kind (39)

R,y — R, =hQ, on [-1,1]. (41)
Here, as usually, (+) denotes the boundary values of the function from the upper

side of [—1, 1], and (—) from the lower side. Choosing m as a normalization constant
so that

1

mR,_y =—+ -, z- 0,
z

2mi
J' Q2 (x)h(x) dx

and applying (41) to R,_, then for the matrix valued analytic function

n R}’l
(& R )
anfl MRnfl
we obtain the following Riemann—Hilbert problem:
YEH(C\[_L 1])7

v = (1+ 01 et ) a5

1 h
Y,=Y_ 01 on [—1,1].

Y =

Our goal is to show that solution (42) of (43), which depends on n, tends as n— oo
to a solution of some boundary value problem which does not depend on .
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First we mention that our restriction for the weight function to be of the form (37)
and (38) allows us to make an analytic continuation of A(x) in the domain J\[—1, 1]

e =2 e H -1, m

i
where the branch for (z> — 1)2 is chosen such that
1
(z2=1)2>0 for z>1.
It gives for the limiting values of /A(z)

- o(x)
hy(x) = +m on [—1,1]

and if we denote

then we have

W_:((l) 1:) W+:((1) lh>:W1. (45)

The latter remarkable relation allows us to present the jump condition in (43) as
Y,=Y W_ or Y_ =Y. W, on[-11].

5.2. Auxiliary boundary value problem recall

Before stating an asymptotic result for the solution of the matrix Riemann—Hilbert
problem, we recall the auxiliary BVP which we studied in Section 2. In terms of the
solution of this BVP we will write an answer (i.e., final asymptotic formulas) and the
properties of the solution will be used in the proof. The problem consist on finding ¢
such that

(PEH(C\[_L]])? 3@+7(P—6C([_]71]>7

@ >0, (46)

0

¢:q 0(z)=0("), z- o,

o.p_0o=1 on [-1,1].
The unique solution of problem (46) is (see (10) and (11))

0() =+ V1) exp{——\/—/ el ﬂfi‘_ﬁ} (47)

=+ 18

1 1 (! Ing(x)
c—?exp{% /71 Zz_ldx}. (48)

n

and the normalization constant for ¢| , =
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We also note that the scalar problem (46) admits several equivalent reformulations,
i.e., the vector version

((p7lp)€H(C\[—l7l])7
(o, ¥)(z)=(E+ -, 5+ ) for some ¢>0, n— 0,
0 o

) = (i ) oL
and the matrix version

E(’:( (p>7 @,y as above,

p aI/T(Q 0 >
+ — 0 Q,l

We are not going to use these versions here and mention them just for completeness.

5.3. Statement of the asymptotic result
Here we prove the following

Theorem 3. Suppose that the weight function (37) satisfies conditions (38). Then for the
matrix Y (see (42)) of the orthogonal polynomials (36) and for the functions of the
second kind (39), the following asymptotic formula holds:

CYS(z) = <I+O(Zq ))X, now, 0<g<l, (49)
uniformly outside any Jordan contour I' = around [—1,1], and

CYS(z) = (I+0(¢") XD ', (50)
uniformly inside the domain bounded by I', where

C =diag(c™',¢), S=diag(e~', ) (51)

are given by (46) and (48), and
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The matrix asymptotic formulas (49) and (50) lead to the following
asymptotic formulas for the polynomials O, and for the functions of the second
kind R,

R ZIC 0(¢"), zeK<C\[-1,1],

o2
&) (9 409+ 0, xel-L1]

Rni (X) _ 1 n xe[—
2. s —(\/P___T(p(x))i—&-O(q ), xe[=1,1].

5.4.. Proof of the theorem

1. First we normalize the Riemann—Hilbert problem (43), forcing the solution to be
holomorphic at co. We define (see (42) and (51))

O R
cQ c
Z=CYS = . 52
chnfl ( )
—— meR,

Now the matrix-valued function Z is holomorphic in C\[—1, 1] and it satisfies the
following Riemann—Hilbert problem:

ZeH(C\[-1,1]),
Z.=ZJ on|[-11], (53)
Z(z)=1+4+0(}) asz- o,

where the jump matrix J, because of

(C'zs™), =(Cc'zsH_w_ on [-1,1]

is given by
Q_
o, P p_h
J=S"'w.s. =|"" on [—1,1].
0o %=



A.L Aptekarev, W. Van Assche | Journal of Approximation Theory 129 (2004) 129-166 153

Our choice of the solution of the auxiliary BVP (46) for the normalization of
problem (43) gives

o 1
J = (”0 V}p_jz> on [—1,1].
®_

This ‘lucky’ expression for the jump matrix of problem (53) allows us to
decompose it as

1

1 0 0 - 1 0
J=<& —x 1) V- ("’—— [—x 1)
?- —V1—x2 0 P+
1 0 0 1 1 0
= 1 ) V1—-x2 —1 nE (54)
(ho?)_ V1= 0 (he?) .

We see that the first matrix here admits an holomorphic continuation in the lower
half of the complex plane and the last matrix does the same in the upper half
plane. After the analytic continuation, and because of the exponential decrease of
¢! outside [—1, 1] as n— oo, we see that J will be close to a very ‘friendly’ central
matrix. This is the essence of the method!

. Now, in order to develop this idea about the analytic continuation of the parts of
the jump, we transform the Riemann—Hilbert problem (53) into the following
problem. We denote

1 0
D= H(o\[-1,1 55
(o1 3 )eH@ 11 (53
and let I" be a contour in 6 such that 4 == [—1, 1] is in the domain Int(I") which is

bounded by I' and oo ¢ Int(I'):
rcs, Ae Int(I).

We define
> [Z in Ouy(l') = C\Int(I'),
| ZD in Int(I).
For Z we have on I'
Z+ = Z,D
and on [—1,1] this Z satisfies

Z.=2Z,D,=Z.JD,=Z_D_D-'JD, =Z_ (D-'JD,).
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If we substitute here the decomposition of J from (54), we see that

0 1 1 0 1 0
DD, =D'D_ Vi—x2 L. L

—VI=x 0 (he?) (he?)
0 1
= VvV1i—x2|.
V1 - x? 0
Denoting the last matrix as

0 1

Jj= V1-x2 |,
—V1 — x? 0

we conclude that the matrix function Z from (56) is a solution of the following
Riemann—Hilbert problem

ZeH(C\{[-1,1]uT}), TI<é, [-1,1]<Int(I),
Z+ =Z_D on I,

Z,=Z_j on[-1,1],

Z(z) =1+ oY) as z— .

. The next step is to consider the limiting problem for (57), i.e., without the jump on

I', because, as we already mentioned, this jump function tends to the identity
matrix as n— oo. We consider the following Riemann—Hilbert problem for the
determination of the function X:

XeH(C\[-1,1]),
X, =X, on[-1,1], (58)
X(z)=1+0(), asz-o .

Writing the entries for the matrix jump condition

xp V= e

(x11+ X12+) _ V1—x2
o Ve X21— ’

—X22— l—xz ﬁ

—x

we see that matrix-valued Riemann—Hilbert problem (56) reduces to two scalar
problems

X214+ X224
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xi1, x12€ H(C\[-1,1]),

i) =1+0() aszo o,

xi2=0(1) as z- 0, (59)
¥y = x12-(=V1—x2) on [-1,1],

X11— :x12+(M) on [—1,1]

and
x21, X0 € H(C\[-1, 1]),
x1(z) =0(1) asz- o0,
xn=1+0() asz- o, (60)

x4 = xn-(=V1—=x?) on [-1,1],
Xa1- = xn4 (V1 —x?) on [-1,1].

1
Note that, in accordance with the chosen branch of (z> — 1)2, we have
1 1

~(ZZ-1%2 =FV1I-x2 on [-1,1],

therefore

1 1 1 1
X1+ = <7x12(22 — 1)2>_ and X214+ = <7x22(22 — 1)2)

F

F

LN . . . .
Thus the function (% x12(z% — 1)2> is the analytic continuation of the function xy;

on the second sheet of the Riemann surface, obtained from the two extended
complex planes cut along the interval [—1, 1] and pasted together ‘cross by cross’.

L\ | . . .
Analogously, the function <%xn (2> - 1)2> is the analytic continuation of x,; on

the second sheet of the Riemann surface. If we choose, in accordance with the
normalization at infinity,

X111 = 1 in C\[—l,l],
then its continuation on the second sheet will again be equal to the constant
function 1, which gives
i

—
(2 —1)2
Checking the normalization of x| at oo, we see that x;; and x|, as above satisfy
the problem in (59).

As for the problem in (60), we have to find the function x;; having a zero at

infinity, and the analytic continuation of x,; on the second sheet of the Riemann
surface which needs to have a pole at infinity (because x»; is regular at co and

X12 =

1
(z> — 1)2 has a pole over there). The choice of xy; as
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(z— (22— 1)7)

= 2i

satisfies these conditions. Then

Bo|—

NN CEICES):
2(z2 - 1)2

and the verification of the normalization of x,, at infinity x;» = 1 + O(%) shows
that we have found the solution for the problem in (60). Hence

1 zzil
1 1
Y= ez e (61)
2i 1
2(2-1)2

is a solution for problem (58).

. Finally, we have to show that the solution of the Riemann problem with a jump

on I close to the identity (see (56)), which presents orthogonal polynomials and
functions of the second kind (see (55),(56) and (52)), tends as n— oo to the
solution of the problem (58) without the jump on I', which is the matrix function
(61). To do this we define the function

I=2zx". (62)

The matrix 3 has a jump on I

3. =ZDXx '=Z x'(xDx"),
so that
3. =3.D, D=XDXx"' (63)

and on [—1, 1] we have
S, =Zj(x ) =Zjj'x "' =3,
Thus the function 3 satisfies the following Riemann—Hilbert problem (note that
there is no jump on [—1, 1]):
JeH(C\I'),
3,=3D onl, (64)
3

and for the jump matrix D on I' we have

D=I+0(¢") onl,
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since the entries of X and X! in (63) do not depend on n and for D the
asymptotics on I' follows from the representation of ¢ in (47) substituted in (55).
To finish the proof we apply to function (62) the following well-known lemma.

Lemma 1. Suppose that the jump matrix D, for the Riemann problem (64) is analytic
in the domain A containing the contour I’

D,eH(A), T'cA, (65)

and satisfies

D, =1+e, (66)
where ¢, —0 uniformly on compact subsets of A as n— oo. Then

3 =1+ 0(z). (67)

A proof of the lemma, with a weaker condition on the jump than (65), can be
found in [3]. We note that for the case of scalar J, the proof of the lemma is rather
trivial by considering a problem for log(3J) for which we can write a solution by
means of the Cauchy integral of log(ﬁ). However, the function log of a matrix is not
properly defined so that another approach is required for proving the lemma in the
matrix case. This will be done in the next section.

Finally, substituting in (67) expressions (62), (58), (56), (55) and (52) we get the
desired asymptotic formulas.

The theorem is proved.

5.5. Proof of the lemma

Assuming the more restrictive condition (65) on the jump matrix in (64) rather
than the one stated in [3], we have an opportunity to give a more elementary proof of
Lemma 1 than the proof in [3].

Substituting (66) in the jump condition of (64), we have the following Riemann
problem for the matrix function

JeH(C\I),

3, =3_+4+¢3_. onl,

J(0) =1.
Applying Cauchy’s integral formula (see (A.1) and (A.2)) for each entry of 3, we
have

1 dé

3() = 5 /F (3@ = +1, zeC. (68)



158 A.L Aptekarev, W. Van Assche | Journal of Approximation Theory 129 (2004) 129-166

Then, because of (65), we can deform I' to I” which is lying inside the domain
AnOut(I)

3¢) =5 //(en\s_)(f)z+l, 2eC\A 9A=Tur (69)
and now the integral is not singular anymore for zeI', and both sides of (69) have a
limit when z—I',. Hence

:;,5:&:/(8;; )(é);’—fj—kl zerl. (70)
Let zoe I be such that
13- (z0)ll = max [[S-(z)|| = M

then from (70) we have
M, <M, ¢, constr + 1
and therefore
L
1 — O(ey)

and substituting this estimate in (68), we arrive at (67).

M, <

Appendix A. The Cauchy residue theorem on a Riemann surface and the solution of the
Riemann problem

A.1. Representation of piecewise analytic functions in C by Cauchy’s integral formula

Let us consider the piecewise analytic function f:
f(z), zeD,
f(z) = { _
fi(z), zeC\D,
where f1, f> are holomorphic functions in the closed domains of their definition
fieH(C\D), f,eH(D).
We assume that D is bounded, with piecewise smooth boundary 9D which coincides
(as a set) with 8 (C\D). The Cauchy integral formula allows us to write 1 as

dé
3 | (RO -AOF + ().
Indeed, the integral on the rlght-hand side is
1 dé dé
A [ A )

- aC\D)
_{ fa(z) = fi(0) + fi(0), zeD,
0+/i(z) = fi(o0) +fi(0), zeC\D.
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Here we use a version of the Cauchy theorem for a domain Q (with o0 €Q)
- 1 _
FeH(Q) = — / F(&)dé=res F=—c_, F(z)=F(w0) i NI
27 Js0 © z
Thus, if we introduce a jump function
J(&) = (&) = /i(&) = /(&) —f=(&), (edD =T,
then the integral
1 dé
= i A.l
1) =5 [0+ C (A1)

gives a solution to the following boundary value problem (BVP) for the piecewise
analytic function f* (with continuous boundary values f; and f_):

(a) feH(T\I),
Find f such that { (b) (fy — /)| =jeH(I), (A2)
(¢) f(e0) = C.

This is a BVP which is usually called the non homogeneous Riemann problem or ‘jump’
problem.

Remark A.1. If]eH(é), where 0 is such that I'c¢ and if I"<9, then for every
zeC\é with 6= and 95 = I'JTI", the solution for (A.2) can be represented as

f(z):%/, '(5);_5 +C, zeC\o. (A3)

Note that for zeé, the right-hand side of (A.3) does not represent the solution of
(A.2).

For further insight it would be useful also to understand the Cauchy integral
formula as a corollary of the more general Cauchy residue theorem. Indeed, for
feH(D), with DcC, the formula

2 dE =
6 -

27i 8Dé—2

} —1(2)

isa corollary of
i / f&Ow(é)dé = Z/:f(zj)rgs w= zj: rzejs Sw,
where we M is a meromorphic function in D, i.e., we H(D\{z;}), with z;eD. The

expression h(&) d¢ is usually called a meromorphic differential in D<C. Thus the
Cauchy differential

()

is an example of a meromorphic differential in C.
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A.2. Riemann surfaces, meromorphic differentials and Cauchy’s theorem on a
Riemann surface

A mysterious fact: why is an integral around infinity, for a function holomorphic
at infinity, not equal to zero and why do we have to count the contribution of the
function at oo despite of its holomorphicity there? This fact has an explanation in
terms of the Riemann surfaces and meromorphic differentials on them.

We start with an explanation of what a Riemann surface means. First of all it is a
surface, i.e., a two-dimensional topological manifold, which means that the surface
R is locally a result of a continuous deformation of the extended complex plane (or a
piece of the plane). Moreover, there is a correspondence between the points e R on
the surface and the points teC of the plane which is established by an open
continuous mapping 7 : R — C. The mapping t(¢) is locally one to one everywhere
except for a discrete set of points, which are called branch points of R. All the other
points of R are called regular points. This mapping is called a projection of R.

Next, to become a Riemann surface, the surface R needs to have a complex
structure. To explain what this means, we recall the notion of a holomorphic function
on R. In a neighborhood of a regular point e R the projection (&) is invertible,
therefore the mapping &(t) is defined in a neighborhood of the point 7(&,)eC. A
function f is called holomorphic in a neighborhood of a regular point &, on R if the
function f((t)) is holomorphic in the neighborhood of 7(&;) on C. A function f is
called holomorphic in a neighborhood U of a branch point &, eR if f is continuous
in U and f is holomorphic in U\&. A pair K = (U, t({)) is called a holomorphic chart
of the surface R if

® [ is a domain in R,
® 7({) is holomorphic in U and maps U to the plane disk u = {|z|<r}eC,
establishing a one to one correspondence.

In practice, Riemann surfaces are presented as a union of holomorphic charts
together with formulas of transformation from one local coordinate to another, and

(+)
/.

>:=U, —»@

)

Fig. 4. A two-sheeted Riemann surface.
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it is convenient to consider a function f({) on R locally as a function f({(z)) on C
using the local variables Te€u.

Example A. The extended complex plane R = C is considered as a Riemann surface
with an atlas of the following holomorphic charts: K; = ({|{|<R}, 1({) =

0, Ky=({L>r}, r(Z_j):%),where R>r.

Example B. A two-sheeted Riemann surface (see Fig. 4 on the right) is a union of the
following holomorphic charts:

K:a: <Ua7{(é’_a)£:‘c>a
{=1*+

1
Ky = (Ub, { (£=bp :r>7 (A4)
(=1>+b

K= (Uj:{a,b, 0™ 0OV ¢ U, 1(0) =), ...

N

Koo = (1680 =1). Koo = (112000 =),

T T

Now a function f({) on R can be understood locally in the domain of the chart
(U,7({)) as a function of the local variable = and its holomorphicity (meromorphi-
city) in U means that the function f({(z)) is holomorphic (meromorphic) in u =
{|z|<r}.

In the same way, using a local variable, we define meromorphic differentials on R
as dQ({) = w({)d{, where w({) is a meromorphic function on R. For correctness of
this definition, i.e., to be independent from the choice of local coordinates, it is
necessary (and sufficient) to satisfy a condition of correspondence: dQ;({;) = d2;({;)
in the intersection of U; and U;. A singularity of the differential dQ = wd( in the
chart (U,t({)) is a point {ye U, {y = {(1¢), where 1y is a singularity of the function
(in the variable t) w({(7)){'(t). The residue of the differential dQ = wd( at the point
Lo = {(t0) is

res dQ =c_y,
50
where ¢_, is the coefficient of (t —19)~' in the Laurent expansion w({(z)){(1) =

Z;ifm ¢;j(t — 10). Note that, because of the holomorphic correspondence of the
charts, the position of the singularity {, of dQ({) and its residue res;, dQ do not
depend on the choice of the chart covering (.

Now we are able to state Cauchy’s theorem on a Riemann surface. Let f'e H(U),

UcTR (R is a compact Riemann surface) and dQ be a meromorphic differential in
U. Then
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37 [ S0d00) =3 reslraa) (A5)

j 2

where {{;} are the singularities of dQ in U.

A.3. The Riemann surface R = C. Examples of meromorphic differentials on R = C,
and normalization of the Riemann problem at an arbitrary point

Here we consider differentials on R = C (see Example A from the previous
section).

Example Al. dQ({) = d(.

In the chart K; = ({|{|<R]|},{(r) =1) we have ('(tr) =1, hence d{ has no
singularities for |{|<R.

In the chart Ky = ({|{|>r},{(r) =1) we have {'(r) = —%, hence d{ has a pole of
second order at { = 0.

Thus, in accordance with (A.5), the integral for a function f, which is holomorphic at
w )
c_
fE) =t

is given by

/?<“ )f(C) di=reslfdl] = gegK_Tl_z) (co+cat+ )} D

This explains the usual convention concerning integration around infinity (see Section
2.1).

Example A2. Consider the meromorphic differential dQ({) = 4

=
1. In Ky we have w({(1)){'(t) = -, hence { = z is a pole with res;_. dQ({) = 1.
2. In Ky we have w({(1)){'(t) = —grt. hence

{C: zis a pole,  res;—.dQ(({) =1,

{= o is a pole, res;_,, dQ({) = —1.

Thus, the meromorphic Cauchy differential on the Riemann surface C has two
poles { =z and { = oo with
1 atz,
resdQ = { * -
—1 at oo.
To indicate the singularities and their residues we will use the notation
dQ(() =dQ((;z, 00) = dQ({; 211y, © (—1)-

By means of the Cauchy differential we can construct the differential
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1 1 . zZ—w
(Ca 1)7W )) = (é’ _ C W> d mdi

Similar to the Cauchy differential in (A.l), this differential can be used for the
solution of the Riemann problem with normalization at any point weC:

(a) feH(C\D),
Find f(z) such that { (b) (. — /)|, =jeH(I),
(C) f(w) = Gy,
= f) =5 [ SO dRGz ) + €. (A6)

A.4. The Riemann problem on R. Examples of meromorphic differentials on the two-
sheeted Riemann surface

The last example of the Riemann problem on C (see (A.6)) can be extended to an
arbitrary compact Riemann surface R and oriented, piecewise smooth curve I' on R

(a) feH(R\D),
Find f(z) such that < (b) (i —f)|, =jeH(I), (A7)
(c) f(w)=Cyy, weR\.

Here £, and f_ are the uniformly bounded limit values of f on I' from the ““positive”
and “‘negative” side with respect to the orientation of I'. By analogy with (A.6),
from Cauchy’s theorem on R it follows: if j({) dQ((; z, w) has no singularities on I,
then

1) =3 [ 040Gz W +Co. (AS)

Note the uniqueness of the solution of (A.7): If R is compact, then the solution of the
Riemann problem (A.7) is unique.

Let f and f be the solutions of (A.7), then for (f — f ) we have j = 0, therefore
f-—r )eH (R) and if R is compact, then, by the maximum principle, (f —f ) is
constant. Moreover, by (c) we see that this constant is zero.

Now we present some important meromorphic differentials on the two-sheeted
Riemann surface (see Example B , Fig. 4, we puta=—1,b=1).

Example B1. We will use the notation z(*) and z(~) for the points belonging to the
“opposite” sheets, but having the same projection zeC.
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We have

V21 1 .
() = e d({ = dQ(G:2(}) . 20))). (A.9)

V18-
is a meromorphic differential on R with singularities described by the right-hand side
of (A.9).

Proof. Itisevident that { = z(*) and { = z(-) are the poles of dQ with residue +1 and
—1, respectively. Next,

Vi—-1=1
K+1: )
(=1"+1
_ 2tvz2 — 1
W2 +2(12+1-2)

= no singularity at { = 1.

= w({(0){'(x)

The same at { = —1 . There is no singularity at { = co(*) : because of

Ko 0= 1 W) =22 =L (1),

T V1—13(1—12) 72
Example B2.
IVE—-14+V22 -1 _
do() =+ V- 2= da(t 2y, 0%, 0. (A.10)

2 (-1 5 D

Proof. There is a singularity at z, with res, dQ = 1, but there is no singularity at z.
There are no singularities at { = +1. Indeed (take +1 for example)

W +2+vVz2 -1 .
202+ 1—z)tve2+2

K1 = wll(x){'(x) =

At oo¥) we have

y IVI—2+1v/22 -1 1
O e e ]

T
therefore
1
dQ = —.
e 2
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)

From (A.10) we obtain the expression for

dQ(Lzay, wien) = dQ<C;Z(1), OO(Hl : OO(i) - d9< W), OO(Hl Lol
b -

l——

Example B3. (Green’s differential).

R S P C CO R
dG() avant dg(z;, E ooH_l)). (A.11)
Proof.
5 , 27
IC+1 : C: T“+1= W(C(T))é’ (T) = T\/T?
1 , T 1

From (A.10) and Green’s differential (A.11) we obtain the expression for the
differential

_ _ 1
dQ((;z), o)) = dQ <C;z(1), ooti), ooi_i)) —5dG. (A.12)
2 2
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